
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

The shape of liquid miscibility gaps and short-range-order

Youn-Bae Kang a, Arthur D. Pelton b,⇑
a Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang, Kyungbuk 790784, South Korea
b Centre de Calcul Thermochimique, Département de génie chimique, École Polytechnique de Montréal, C.P. 6079, succursale Centre-ville, Montréal, Québec, Canada

a r t i c l e i n f o

Article history:
Received 27 November 2012
Accepted 3 January 2013
Available online 18 January 2013

Keywords:
Miscibility gaps
Short-range order
Modified quasi-chemical model
Calphad technique

a b s t r a c t

The observed ‘‘flattened’’ shape of liquid miscibility gaps in binary alloys is not easily reproduced by a
simple Gibbs energy equation involving a random-mixing Bragg–Williams (BW) expression for the con-
figurational entropy and a polynomial expansion of the excess Gibbs energy since short-range-ordering
(SRO) is not taken into account. It is shown that accounting for the SRO through a simple application of
the modified quasi-chemical model (MQM) in the nearest-neighbour pair approximation is sufficient to
provide a good representation of miscibility gaps using only a very few temperature-independent coef-
ficients. For the many systems in which the only data available are the miscibility gap boundaries at
lower temperatures, the MQM can therefore provide a good prediction of the gap boundaries at higher
temperatures, as well as of the excess enthalpy. Furthermore, the MQM provides a significantly better
prediction of the miscibility gap in a ternary system based only upon optimized model parameters of
its three binary sub-systems than does the BW polynomial model. For binary systems in which deviations
from ideal behaviour are not too large, it is shown that the MQM can be approximated by one additional
term in the polynomial BW expression involving no additional empirical coefficients.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The molar Gibbs energy of binary liquid alloy solutions with
components A and B is often approximated by a regular solution
expression:

g ¼ ðXAgo
A þ XBgo

bÞ þ RTðXA ln XA þ XB ln XBÞ þ gE ð1Þ

with the molar excess Gibbs energy given as:

gE ¼ hE � TsE ¼ aAB XAXB ð2Þ

where Xi and go
i are the mole fraction and standard molar Gibbs en-

ergy of component i, R is the ideal gas constant, T is the absolute
temperature, and gE; hE and sE are the molar excess Gibbs energy,
enthalpy and entropy. The configurational entropy,
�R ðXA ln XA þ XB ln XBÞ, is obtained from the Bragg-Williams
assumption of random mixing of A and B on a quasilattice. If the
parameter aAB is positive, a miscibility gap results. (If aAB is con-
stant, independent of temperature and composition, then the con-
solute temperature of the gap can easily be shown to be given by
TC ¼ aAB=2R at XA ¼ XB ¼ 0:5:) In order to fit experimental phase
equilibrium and thermodynamic data and develop databases of
model parameters, aAB is usually expanded as an empirical
polynomial:

aAB ¼ 0LAB þ 1LABðXB � XAÞ þ 2LABðXB � XAÞ2 þ � � � ð3Þ

where the kLAB are empirical model parameters which may be func-
tions of T.In general, in order to reproduce adequately experimental
binary miscibility gaps, several empirical terms are required in
equation (3). If only two or three temperature-independent param-
eters are used, the resultant calculated gaps are usually significantly
higher and more rounded than experimental gaps which tend to be
‘‘flatter’’. As an example, the phase diagram of the Ga–Hg system is
shown in figure 1. The dashed line is the miscibility gap calculated
from equations (1)–(3) with the single parameter
oLAB = 9163 J �mol�1 (table 1) which was selected in order to repro-
duce the measured monotectic temperature (26.7 oC) and composi-
tions. As a second example, the Ga–Pb phase diagram is shown in
figure 2. Two temperature-independent parameters (aAB = 17950 +
1506ðXGa � XPbÞ J �mol�1) (table 1) were selected in order to repro-
duce the measured monotectic temperature and compositions. In
both figures 1 and 2, the calculated gaps, shown by the long dashed
lines labelled ‘‘BW (Bragg Williams) model’’, are clearly higher and
more rounded than the experimental values. In figures 3 and 4, the
long dashed lines show that the excess enthalpies, calculated with
the same parameters, are more positive than the experimental
values.

Of course, if experimental data are available for both the misci-
bility gap and the excess enthalpy, as is the case in these two sys-
tems, then the data can usually be fitted with equation (3) as long
as a sufficient number of terms is used. To obtain an acceptable fit
to the data in figures 1 and 3 for the (Ga + Hg) system, for example,
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it has been shown [11] that temperature-dependent parameters
aAB are required with a total of seven coefficients. The fact that
the parameters are temperature-dependent shows that the entro-
py is not adequately given by the ideal Bragg–Williams expression.
That is, sE is not negligible.

However, in most systems with liquid miscibility gaps only lim-
ited data are available. Generally the boundaries of the gaps have
been measured only at lower temperatures near the monotectic
temperature, not near the consolute temperature, and data for
the excess enthalpy are lacking. In such cases, the Bragg-Williams
model has no predictive ability as has been illustrated by the pre-
ceding examples. If empirical parameters are optimized based only
on the measured compositions of the boundaries of a miscibility
gap at lower temperatures, the resultant calculated gap will usu-
ally be much too high and rounded, and the calculated excess en-
thalpy will be too positive. Many such examples can be found in
the literature.

Moreover, as will be shown in Section 3, even if a complete set
of experimental data for a binary system is available and these data
have been adequately fitted to equation (3) (as was done [11] in
the (Ga + Hg) system using seven coefficients), subsequent at-
tempts to use these binary parameters to estimate thermodynamic
properties of ternary and higher-order liquid solutions will usually
give unsatisfactory results.

It is generally recognized that the failure of the simple Bragg-
Williams model to reproduce the observed ‘‘flattened’’ shape of
miscibility gaps is due to its neglect of short-range-order
(SRO).However, it is often stated [12] that a quantitative descrip-
tion can only be obtained through Renormalization Group Theory.
In the present article it will be shown that such sophistication is
not required. In fact, a simple application of quasi-chemical theory
in the nearest-neighbour pair approximation is usually sufficient.

2. Modified quasi-chemical model (MQM) in the nearest-
neighbour pair approximation

Consider a solution of atoms or molecules A and B which are
distributed over the sites of a quasi-lattice. A first-nearest-neigh-
bour pair exchange reaction can be written:

ðA� AÞpair þ ðB� BÞpair ¼ 2ðA� BÞpair; DgAB ð4Þ

If the Gibbs energy change DgAB of this reaction is positive, then (A–
A) and (B-B) pairs are favoured over (A–B) pairs. In the random-
mixing Bragg–Williams approximation, the probabilities of (A–A),
(B–B) and (A–B) pairs are always X2

A; X2
B, and 2XAXB respectively.

Hence, the system can only reduce the number of energetically
unfavourable (A–B) pairs by separating into two immiscible phases.
In reality, however, clustering of A and B can occur within a single-
phase solution, thereby permitting an increase in the number of
favourable (A–A) and (B–B) pairs without separation into two
phases. Such clustering will be most pronounced, and have the
greatest effect in lowering the Gibbs energy, in the central compo-
sition region where XA � XB. In the dilute terminal composition re-
gions, the configurational entropy terms predominate and so the
solution tends towards random mixing. As a result, SRO has the
largest effect on lowering the miscibility gap in the central compo-
sition region, thereby producing the observed ‘‘flattened’’ shape.

The quasi-chemical model, in the pair approximation, first
proposed by Fowler and Guggenheim [13] and later extended by
Blander, Pelton, Chartrand and co-workers [14–16], considers the
first-nearest-neighbour pair exchange reaction of equation (4).
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FIGURE 1. Ga–Hg phase diagram calculated with different models and experimen-
tal data points (see Refs. [1–3]).

TABLE 1
Model parameters used in calculations (J �mol�1) (BW = Bragg–Williams;
MQM = modified quasi-chemical model).

Z = 6

Ga–Hg BW a ¼ 9163
MQM Dgðz=2Þ ¼ 9790

Ga–Pb BW a ¼ 17950þ 1506ðXGa � XPbÞ
MQM Dgðz=2Þ ¼ 18263þ 1506ðXGa � XPbÞ

Ga–Tl BW a ¼ 16945þ 1506ðXGa � XTlÞ
MQM Dgðz=2Þ ¼ 17573þ 1506ðXGa � XTlÞ

Al–In MQM Dgðz=2Þ ¼ 23849þ 2510ðXAl � XInÞ
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FIGURE 2. Ga–Pb phase diagram calculated with different models and experimen-
tal data points (see Refs. [4–8]).
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FIGURE 3. Excess enthalpies in Ga–Hg liquid solutions calculated with different
models and experimental data points (see Ref. [3]).
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Let Z be the nearest-neighbour coordination number. Then, for
one mole of solution:

ZXA ¼ 2nAA þ nAB; ð5Þ

ZXB ¼ 2nBB þ nAB; ð6Þ

where nAA, nBB and nAB are the numbers of moles of pairs in one mole
of solution. Pair fractions Xij are defined as:

Xij ¼ nij=ðnAA þ nBB þ nABÞ: ð7Þ

The molar Gibbs energy is assumed to be given by:

g ¼ ðXAgo
A þ XBgo

BÞ þ ðnAB=2ÞDgAB � TDsconfig : ð8Þ

The configurational entropy Dsconfig is given by randomly dis-
tributing the first-nearest-neighbour pairs over ‘‘pair positions’’.
In three dimensions the exact mathematical expression is un-
known. The following approximate expression is obtained [15]:

Dsconfig ¼ �RðXA ln XA þ XB ln XBÞ

� R nAA ln
XAA

X2
A

 !
þ nBB ln

XBB

X2
B

 !
þ nAB ln

XAB

2XAXB

� �" #
:

ð9Þ

Minimizing the Gibbs energy subject to the constraints of equa-
tions (5) and (6) yields the following ‘‘quasi-chemical equilibrium
constant’’ for reaction (4):

X2
AB

XAAXBB
¼ 4 exp �DgAB

RT

� �
: ð10Þ

At a given composition, and for a given value of DgAB, equations
(5), (6), and (10) can be solved to give Xij which can then be substi-
tuted back into equations (7)–(9). When DgAB ¼ 0, the solution is a
random ideal solution. As DgAB becomes progressively more posi-
tive, reaction (4) is displaced progressively to the left and the de-
gree of SRO increases.

For purposes of optimization, DgAB may be expanded [15] as a
polynomial in the mole fractions:

0lAB þ 1lABðXB � XAÞ þ 2lABðXB � XAÞ2 þ � � � ; ð11Þ

where klAB are adjustable model parameters. When DgAB is small, it
follows from equation (10) that the pair fractions are close to their
values in a randomly distributed solution ðXAA ¼ X2

A; XBB ¼
X2

B; XAB ¼ 2XAXBÞ: Hence the configurational entropy is close to the

ideal (Bragg–Williams) entropy, and nAB � 2XAXBðZ=2Þ; where
ðZ=2Þ is the total number of pairs in a mole of solution. The molar
Gibbs energy expression from equation (8) is then approximately
the same as equations (1) and (2) with aAB � DgABðZ=2Þ and with
all parameters kLAB � klABðZ=2Þ.

Equation (9) for the entropy can be shown [14] to be exact only
for a one-dimensional lattice (Z = 2). In three dimensions the equa-
tion is only approximate since no exact solution of the three-
dimensional Ising model is known. As discussed previously
[15,17], the error introduced by this approximation can be offset
through the choice of somewhat non-physical values of Z. From
our experience in applying the MQM to many liquid metallic solu-
tions, we have found that a value of approximately Z ¼ 6 yields the
best results, although the calculations are not highly sensitive to
this parameter.The miscibility gap in the (Ga + Hg) system was cal-
culated with the MQM with one temperature-independent param-
eter, DgGaHgðZ=2Þ = 9790 J �mol�1, selected so as to reproduce the
measured monotectic temperature and compositions. It can be
seen in figure 1 that the experimental miscibility gap is reproduced
very closely at all temperatures and compositions. Furthermore, as
seen in figure 3, the measured excess enthalpy is also reproduced
very closely. For the (Ga + Pb) system, two temperature-indepen-
dent parameters were used (see table 1). Again, the experimental
miscibility gap (Figure 2) and excess enthalpy (Figure 4) are repro-
duced very well. It can be seen in table 1 that the numerical values
of the MQM parameters are very similar to those used in the
Bragg–Williams model. Note that the data for hE are closely repro-
duced even though the model parameters are temperature-inde-
pendent, thereby showing that the entropy is well represented
by the configurational entropy expression in equation (9); non-
configurational excess entropy terms are not required.

Similar examples for the (Ga + Tl) and (Al + In) systems are
shown in figures 5 to 8. The parameters are shown in table 1. In
all preceding examples, it can be seen that the MQM with only
one or two temperature-independent parameters closely repro-
duces the observed flattened shape of the miscibility gaps and
the excess enthalpy data simultaneously.

As mentioned previously, in most systems with liquid miscibil-
ity gaps, only limited data are available. Generally the boundaries
of the gaps have been measured only near the monotectic temper-
atures, not near the consolute temperatures, and data for the
excess enthalpy are lacking. In such cases, if the empirical
MQM parameters are optimized based only on the measured
compositions of the boundaries of the miscibility gap at lower
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temperatures, the gap boundaries at higher temperatures and the
excess enthalpy will be predicted by the MQM with much better
accuracy than is the case with the Bragg–Williams model.

(All figures were calculated with the FactSage [29] thermody-
namic computing system. Gibbs energies of the pure solid and li-
quid elements were taken from Dinsdale [30]).

3. Predicting ternary miscibility gaps from binary data

One of the main reasons for developing databases of optimized
thermodynamic parameters of model equations of solutions is that
it permits the prediction of the thermodynamic properties and
phase diagrams of ternary and higher-order solutions from the bin-
ary model parameters. This is a primary goal of what has come to
be known as the ‘‘Calphad technique’’ of critical evaluation and
modelling. Clearly, the predictions will only be as good as the mod-
els which are used.As discussed above, the Ga–Hg liquid solution
was optimized [11] with the Bragg–Williams model, equations
(1) and (2), with seven coefficients required in equation (3) in or-
der to reproduce the miscibility gap and the excess enthalpy data.
Similar optimizations of the Ga–Cd and Hg–Cd liquid phases using
the BW model were carried out [31,32] to obtain expansions of
aGaCd and aHgCd with, respectively, 9 and 5 coefficients. The proper-
ties of the Ga–Hg–Cd ternary liquid solution were then estimated
from these binary parameters using the BW equation:

g ¼ ðXAgo
A þ XBgo

B þ XCgo
CÞ þ RTðXA ln XA þ XB ln XB þ XC

ln XCÞ þ XAXBaAB þ XBXCaBC þ XCXAaCA

ðA;B;C ¼ Ga;Hg;CdÞ ð12Þ

along with the ‘‘Kohler interpolation method’’ whereby the aij, are
assumed to be constant along lines of constant ratio Xi=ðXi þ XjÞ.
(Other so-called ‘‘geometrical’’ interpolation methods are also com-
monly used, such as the Muggianu method in which aij is assumed
to be constant along lines of constant ðXi � XjÞ. As long as deviations
from ideal mixing behaviour are not too large, these methods all
give quite similar results. For a discussion, see Pelton [33].)

The calculated miscibility gap boundary along two composi-
tional joins in the ternary system is shown by the dashed lines in
figures 9 and 10. It can be seen that the predicted gap is higher
and rounder than the measurements. The reason for this is the
same as in the case of binary systems. Namely, the Bragg–Williams
model forces random mixing so that the system can only reduce
the number of energetically unfavourable (A–B) pairs by separating
into immiscible phases. Clustering of A and B within a single-phase
solution is not permitted. It must be stressed that the model fails to
accurately predict the miscibility gap in the ternary system even
though the data in all three binary sub-systems were well repro-
duced by virtue of the use of a large number of binary parameters.

Next, the miscibility gap and excess enthalpy data in the three
binary systems were optimized with the MQM using only one or
two coefficients in each case. The thermodynamic properties of
the ternary liquid solution were then estimated from the binary
parameters using the following MQM equation [16]:
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g ¼ ðXAgo
A þ XBgo

B þ XCgo
CÞ � TDsconfig þ ðnAB=2ÞDgAB

þ ðnBC=2ÞDgBC þ ðnCA=2ÞDgCA ð13Þ

with

Dsconfig ¼ �RðXA ln XA þ XB ln XB þ XC ln XCÞ

� R
nAA ln XAA

X2
A
þ nBB ln XBB

X2
B
þ nCC ln XCC

X2
C

þ nAB ln XAB
2XAXB

þ nBC ln XBC
2XBXC

þ nCA ln XCA
2XC XA

2
4

3
5; ð14Þ

where Dgij was assumed to be constant along lines of constant ratio
Xi=ðXi þ XjÞ. The predicted miscibility gap, shown in figures 9 and
10, can be seen to be in significantly better agreement with the
measurements than that predicted by the Bragg–Williams model.

4. Approximating the quasi-chemical model by a polynomial
equation

Although there are several commercial software packages (see
Refs. [29,35,36]) that can be used to calculate thermodynamic
properties and phase equilibria with the polynomial model of
equations (1)–(3), only the FactSage system [29] currently permits
calculations with the MQM. Accordingly, following the method of
Førland [37], we derive here a polynomial approximation to the
MQM equations which can be used to approximate SRO in binary
systems as long as deviations from ideal solution behaviour are
not too large.

Assume that reaction (4) is at equilibrium with the pair frac-
tions deviating from their values in an ideal random solution by
an amount y. That is:

XAA ¼ ðX2
A þ yÞ; XBB ¼ ðX2

B þ yÞ; XAB ¼ ð2XAXB � 2yÞ: ð15Þ

Substitute equation (15) into equations (8) and (9), expanding
the logarithmic terms as second-order Taylor expansions as
follows:

ln
XAA

X2
A

 !
¼ ln 1þ y

X2
A

 !
� y

X2
A

� 1
2

y

X2
A

 !2

ð16Þ

and similarly for the other logarithmic terms. This yields an approx-
imate polynomial expansion for g. Ignoring terms in y3, set dg/dy = 0
at constant composition, thereby obtaining the following expres-
sion for y:

y ¼ DgABX2
AX2

B=RT ð17Þ

Substitute equation (17) back into the polynomial expansion for
g setting aAB ¼ DgABðZ=2Þ.

This gives:

gE ¼ aABXAXB � a2
ABX2

AX2
B=ZRT; ð18Þ

where aAB may be expressed as a polynomial exactly as in equation
(3).Corresponding approximate expressions for hE, sE, and the molar
excess heat capacity cE

P can be obtained by taking the appropriate
temperature derivatives of equation (18). For example, if aAB is
not a function of temperature:

hE ¼ XAXBaAB � 2a2
ABX2

AX2
B=ZRT; ð19Þ

sE ¼ �a2
ABX2

AX2
B=ZRT2; ð20Þ

cE
p ¼ 2a2

ABX2
AX2

B=ZRT2: ð21Þ

Furthermore, for the case in which aAB is constant, independent of
both temperature and composition, the critical (consolute) temper-
ature of the gap can be calculated by setting
d2g=dX2

B ¼ 0 at XB ¼ 0:5 giving:

Tc ¼ aAB ð1þ ð1� 4=ZÞ1=2Þ=4R: ð22Þ

Note that equation (18) contains no more adjustable parame-
ters than equation (2) apart from the coordination number Z which
should generally be set equal to 6. The final term in equation (18) is
an approximate correction for SRO. As expected, this term is largest
in the central composition region and is always negative since SRO
has the effect of stabilizing the solution and depressing the misci-
bility gap in the central composition region. The term is also larger
at lower values of T where SRO is more prevalent.

The miscibility gaps and hE in the (Ga + Hg), (Ga + Pb) and
(Ga + Tl) systems were recalculated using equation (18). The
parameters aAB were set equal to the MQM parameters from Ta-
ble 1. (For example, for the (Ga + Hg) system, aAB in equation
(18) was taken as 9790 J/mol.) As can be seen from figures 1, 2
and 5, with the same parameters equation (18) and the MQM give
nearly identical calculated gap boundaries near the monotectic
temperatures. The calculated miscibility gaps and hE curves shown
in figures 1 to 6 can be seen to be in very good agreement with the
measurements (and with the calculations using the full MQM
equations).

The use of equation (18) thus substantially reduces the number
of parameters required to optimize a binary liquid solution. For the
(Ga + Hg) system, for example, only one temperature-independent
parameter is needed, compared to the seven required [11] when
equation (2) is used. Furthermore, for binary systems in which
the only available data are the boundaries of the gap at lower tem-
peratures near the monotectic, equation (18) provides a good
means of estimating both the gap boundaries at higher tempera-
tures and hE using only a small number of temperature-indepen-
dent parameters. For example, based solely on the measured
compositions of the gap boundaries at the monotectic temperature
in the (Ga + Hg) system, the parameter aAB in equation (18) is cal-
culated to be 9790 J �mol�1. Substituting this into equation (22)
gives a critical temperature of 191 oC which is close to the mea-
sured value in figure 1.Unfortunately however, from the discussion
in Section 3 it can be appreciated that the use of equation (18) will
not improve the accuracy of predictions of ternary thermodynamic
properties and miscibility gaps from optimized binary parameters.
For this, the full MQM equations are required.

5. Conclusions

Liquid miscibility gaps are often calculated from Gibbs energy
equations involving a random-mixing Bragg–Williams (BW)
expression for the configurational entropy and a polynomial
expansion in the mole fractions for the excess Gibbs energy. Unless
many empirical temperature-dependent parameters are used in
the polynomial expansions, the calculated gaps are usually too
high and rounded. It is generally recognized that this failure of

Gubbels (1994)
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FIGURE 10. Ga–Hg–Cd liquid miscibility gap calculated along the join XGa = 0.5
using only optimized binary parameters and either the BW or MQM model and
comparison with experimental data points (see Ref. [34]).
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the simple BW model to reproduce the observed ‘‘flattened’’ shape
of miscibility gaps is due to its neglect of short-range-order.
Although it is often stated that a quantitative description can only
be obtained through Renormalization Group Theory, we have
shown that a simple application of the modified quasi-chemical
model (MQM) in the nearest-neighbour pair approximation is suf-
ficient. The observed miscibility gaps in many binary systems can
be quantitatively reproduced, along with the observed excess en-
thalpy curves, with only one or two temperature-independent
empirical coefficients in a polynomial expansion of the Gibbs en-
ergy of the quasi-chemical pair-exchange reaction.

In many binary systems with liquid miscibility gaps, the only
available data are the boundaries of the gap at lower temperatures
near the monotectic. Using only these data to fix values of two or
three temperature-independent coefficients, one can use the
MQM to reasonably estimate the gap boundaries at higher temper-
atures as well as the excess enthalpy.

Even if experimental miscibility gaps and excess enthalpies in
all three binary subsystems of a ternary system have been ade-
quately reproduced by virtue of using many temperature-depen-
dent parameters in a polynomial BW model, the ternary
miscibility gap will not be well predicted from only the binary
parameters. The MQM, on the other hand, provides a significantly
better prediction.

For systems which do not deviate too far from ideal behaviour,
it has been shown that the MQM can be quite well approximated
by one additional term in the polynomial BW expansion involving
no additional empirical coefficients. The approximate equation
should be useful to those who have access to software in which
the BW polynomial model, but not the MQM, has been pro-
grammed. For example, as has been shown, if the measured gap
boundaries near the monotectic temperature are reproduced using
a simple temperature-independent two-coefficient sub-regular
solution model for gE, then the critical temperature and composi-
tion of the gap can be reasonably well estimated through the use
of the approximate equation. It must be noted, however, that
although the approximate expression is usually quite adequate
for binary systems, it does not take into account coupling among
the various pair exchange reactions in a ternary system. Hence,
predictions of ternary miscibility gaps from binary model parame-
ters will not be as good as those obtained using the full MQM
equations.
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