The SGTE(2017) alloy database

 

TO OBTAIN ,

 

-         A LIST OF all the unary, binary, ternary and quaternary SYSTEMS WHICH HAVE BEEN ASSESSED

 

-         A LIST OF ALL ASSESSED phases IN EACH OF THE SYSTEMS

 

-         A CALCULATED PHASE DIAGRAM FOR EACH OF THE LISTED BINARY SYSTEMS

 

-         ASSiSTANCE WITH PHASE SELECTION

    

CLICK ON "List of optimized systems and calculated binary phase diagrams."

 

 

General

 

The SGTE 2017 database represents a significant update and revision of the previous  SGTE 2014 alloy database.

 

The 79 elements included in the database are,

 

Ag,   Al,   Am,   As,   Au,   B,   Ba,   Be,   Bi,   C,   Ca,   Cd,   Ce,   Co,   Cr,   Cs,   Cu,  Dy,   Er,   Eu,   Fe,   Ga,   Gd,   Ge,  H, Hf,   Hg,   Ho,   In,   Ir,   K,   La,   Li,   Lu,   Mg,  Mn,   Mo,   N,   Na,   Nb,   Nd,   Ni,   Np,   O,   Os,   P,   Pa,   Pb,   Pd,   Pr,   Pt,   Pu,  Rb,   Re,   Rh,   Ru,   S,   Sb,    Sc,   Se,   Si,   Sm,   Sn,   Sr,   Ta,   Tb,   Tc,   Te,   Th,  Ti,   Tl,   Tm,   U,   V,   W,   Y,   Yb,   Zn,   Zr

 

From among these elements, there are some 603 completely assessed binary alloy systems, of which over 32 are newly assessed systems and many others have been revised or amended on the basis of newly published experimental information. The database also includes about 141 ternary and 15 higher-order systems for which assessed parameters are available for phases of practical relevance. The systems now incorporate approximately 319 different solution phases and 1166 stoichiometric intermetallic compound phases.

 

This version of the SGTE Solution Database thus represents a significantly upgraded general alloy database. The database is intended to provide a sound basis for calculations relating to the production, heat treatment, constitution, and application of a wide range of alloy types.

 

All the assessed binary systems included in the SGTE alloy database are described over all ranges of composition and temperature, i.e. the assessed data provide a good description of the complete phase diagrams and thermodynamic properties for the binary alloy systems concerned.

 

Although a large number of ternary interaction parameters are included for the different phases in the database, these are in many cases associated only with phases rich in a particular metal. As such, care should be exercised in calculating phase equilibria for other composition ranges of multi-component alloys. By referring to the listing of systems and phases for which assessed parameters are available, the user can determine whether proposed calculations for a particular higher-order system will be based on a complete set of assessed binary and ternary parameters  (at best) or summation of binary parameters only (at worst). Clearly the latter case, or use of incompletely assessed data sets, can lead to incorrect or unreliable results. 

 

In a binary system, if no assessed mixing parameters are available for a particular phase, the phase will be treated as ideal. Correspondingly, the properties of a ternary or higher-order phase will be calculated applying the appropriate models used in the database. This procedure may give useful results if the alloy compositions in question are close to a pure component or to a binary edge for which assessed data are available. However, results of calculations for other composition ranges should be treated with extreme caution. 

 

 

Composition Ranges

 

The database is intended to allow calculation over all ranges of composition, although, as mentioned above, the assessed data are often most reliable for metal-rich composition ranges.

 

Temperature Ranges

 

The database is generally most reliable for the temperature range of approximately 200oC to 2000oC, although the assessed data for some alloys containing high melting point metals are reliable to still higher temperatures.

 

 

Modeling

 

In the assessments, the liquid phase has been described using a simple substitutional solution approach based on the Redlich-Kister-Muggianu polynomial expression. Most of the solid phases have been described using sublattice models which include interstitials and vacancies where appropriate.

 

 

 

 

Use of the Database

 

The phase diagrams of all the binary systems listed above have been checked using FactSage.

 

If there is the possibility of a miscibility gap (or 2 miscibility gaps) occurring in the LIQUID, FCC, BCC or HCP phase, the I-option (J-option) must be used in selecting that phase for the calculations.

 

The I-option also needs to be used with the ordered solid solutions, B2_BCC, L12_FCC and ORD_HCP, which are based on the BCC, FCC or HCP disordered state (see below).

 

With this database it is strongly recommended to always select the option permitting one-component solutions to be selected.  This is done in the reactants window of the Equilib or Phase Diagram module by clicking on,

Data Search -> minimum solution components = 1

 

In FactSage 6.4, the database has been modified to simplify the selection of species when the Equilib or Phase Diagram modules are being used.  Phases which are not possibly relevant to the calculation at hand will not appear on the menu window. Furthermore, if one now simply selects all the solution phases from SGTE(2017) and all the pure solid phases from SGTE(2017) which appear on the menu window, a correct calculation will result in most cases, with the I- or J-option (for possible immiscibility) automatically selected if possibly required.

 

 

References for SGTE2017 Database

 

 

 

Binary Systems

 

Ag-Al

 

S. S. Lim, P. L. Rossiter and J. W. Tibballs, CALPHAD, 1995, 19(2), 131-142. “Assessment of the Al-Ag binary phase diagram”. Note The assessment requires a new dataset for Ag/CUB_A13/.

 

 

Ag-Au

 

The data are taken from the assessment of Hassam et al (S. Hassam, M. Gambino, M. Gaune-Escard, J. P. Bros, J. Agren, Metall. Trans. 1988, 19A, 409-416 “Experimental and calculated Ag+Au+Ge phase diagram”).

 

Ag-B

 

Data for the Ag-B system are from an unpublished assessment of  J. Korb (2004) supplied by GTT to SGTE in 2005.

 

Ag-Ba 

 

Data for the Ag-Ba system are from an unpublished assessment by P. Y. Chevalier and E. Fischer (1995) supplied to SGTE, January 2005.

                                    T max = 5800 K

Ag-Be

 

Data for the Ag-Be system are from an unpublished assessment of  J. Korb (2004) supplied by GTT to SGTE in 2005.

 

Ag-Bi

 

The data are from the assessment of Leo Lukas based on Zimmermann's original work (H. L. Lukas, B. Zimmermann, Unpublished Work, 1998, B. Zimmerman, Thesis, University of Stuttgart 1976 “Optimisation by experimental and calculation of the binary and ternary systems of Ag, Bi, Pb and Tl”).

 

Ag-C

 

Data for the Ag-C system are from an unpublished assessment of  J. Korb (2004) supplied by GTT to SGTE in 2005.

 

Ag-Ca

 

Data for the Ag-Ca system are from an unpublished assessment by P. Y. Chevalier and E. Fischer (1996) supplied to SGTE, January 2005.

                                    T max = 4100 K

Ag-Cd                

 

Data for the Ag-Cd system are from an unpublished assessment by P. Y. Chevalier (2004) supplied to SGTE, January 2005

 

 

 

Ag-Ce                

 

Data for the Ag-Ce system are from the assessment of Yin et al. (F. Yin, M. Huang, X. Su, P. Zhang, Z. Li, Y. Shi, J. Alloy Comp., 2002, 334, 154-158. “Thermodynamic assessment of the Ag-Ce (silver-cerium) system”).

 

Ag-Cr                

 

Data for the Ag-Cr system are from an unpublished assessment of T. Jantzen (2004) supplied by GTT to SGTE in 2005.

 

Ag-Cu                 

 

The data for the Ag-Cu system are from an update of Lukas (H. L. Lukas, Unpublished work, 1998) of his earlier assessment (F. H. Hayes, H. L. Lukas, G. Effenberg, and G. Petzow, Z. Metallkde. 77 (1986) 749-754) “A thermodynamic optimisation of the Cu-Ag-Pb system”.

 

Ag-Dy

 

Thermodynamic Assessments of Ag-Dy and Ar-Er binary systems

Z.H.Long, Y.J.Yang, S.Jin, H.S. Liu, F.Zheng, Z.P.Jin,

J. Alloys Compd., 489 (2010) 146-151

Assessment uses previus unary data for Dy. Recent data

shifts invariant temperatures but still generally within

experimental accuracy.

T max = 4000 K

 

Ag-Er

 

Thermodynamic Assessments of Ag-Dy and Ag-Er binary systems

Z.H.Long, Y.J.Yang, S.Jin, H.S. Liu, F.Zheng, Z.P.Jin,

J. Alloys Compd., 489 (2010) 146-151

 

Ag-Fe                

 

Data for the Ag-Fe system are from an unpublished assessment of J. Korb (2004) supplied by GTT to SGTE in 2005.

 

Ag-Ge                

 

P. Y. Chevalier, Thermochimica Acta 1988, 130, 25-32 “Critical assessment of thermodynamic data for the Silver-Germanium system”

 

Ag-In                

 

P. Y. Chevalier and E. Fischer (Private Communication, 1998). The data for the fcc phase were modified by A. T. Dinsdale February 1999 to be compatible with latest data for fcc In.

 

Ag-Ir                

 

SGTE Noble metals database compiled by Philip Spencer.

 

Ag-Mg                

 

SGTE Noble metals database compiled by Philip Spencer (2007).

                                    T max = 4190 K

Ag-Mn

 

I. Karakaya, W. T. Thompson,  Bull. Alloy Phase Diagrams, 1990, 11, (5),        480-486. "The Ag-Mn (silver-manganese) system".                         

 

Ag-Mo                

 

Data for the Ag-Mo system are from an unpublished assessment of

 J. Korb (2004) supplied by GTT to SGTE in 2005.

 

Ag-Nb

 

Data supplied to SGTE by GTT,

04Kor ‘Juergen Korb, GTT-Technologies, 2004.‘

05Jan ‘Tatjana Jantzen, GTT-Technologies, 2005.‘

 

Ag-Nd

 

Thermodynamic Assessments of Ag-Gd and Ag-Nd systems

S.L.Wang, C.P.Wang, X.J. Liu, K.Ishida, J. Alloys Compd., 476

 (2009) 245-252.

 

Ag-Ni                

 

Assessment by A. T. Dinsdale  -26/8/2004

 

Ag-Os                

 

P. J. Spencer, private communication, June 1998

 

Ag-Pb                

 

H.L. Lukas: Unpublished work, 2000, based on original work of

B. Zimmerman, Thesis, University of Stuttgart 1976.

“Optimisation by experimental and calculation of the binary and ternary systems of Ag, Bi, Pb and Tl”.

 

Ag-Pd                

 

The data for the Ag-Pd system are from the assessment of G. Ghosh, C. Kantner, G. B. Olson, J. Phase Equilib., 1999, 20(3), 295-308.

 

Ag-Pt

 

 SGTE Noble metals database compiled by P. J. Spencer.

 

Ag-Rh

 

 SGTE Noble metals database compiled by P. J. Spencer                

 

Ag-Ru

 

SGTE Noble metals database compiled by P. J.  Spencer    

 

Ag-Sb                

 

E. Zoro, C.  Servant, B.  Legendre,

"Thermodynamic modelling of the Ag-Au-Sb system",

 Journal of Phase equilibria and Diffusion, 2007, 28, 250-257.

 

Ag-Sc                

 

Data supplied by GTT

 

Ag-Si                

 

P. Y. Chevalier: Thermochimica Acta 1988, 113, 33-41,

Thermodynamic evaluation of the Silver-Silicon system”.

 

Ag-Sn                

 

Based on an assessment by Oh et al (C.-S. Oh, J.-H. Shim, B.-J. Lee, D. N. Lee; J. Alloys Compounds, 1996, 238, 155-66, "A thermodynamic study on the

 Ag-Sb-Sn system").

Data for the fcc  PHASE were modified by A. T. Dinsdale to accommodate changes to the data for fcc Sn. Liquid data revised by Andy Watson in the light of new enthalpies of mixing data. Further revision in order to raise eutectic temperature close to pure Sn.

 

 

Ag-Sr

 

Y. Liu, D. Liang, J. Alloys and Compounds, 407, 74-77 (2006),

Data provide by Thermodata, December 2006.                              

                                    T max = 2500 K

Ag-Te

 

W. Gierlotka, J. Lapsa, K. Fizner, JPED, 31(6), 509-517,

"Thermodynamic description of the Ag-Pb-Te system”.

                                    T max = 2200 K

                     

Ag-Ti

 

Mei Li, Changrong Li, Fuming Wang, Weijing Zhang,

 CALPHAD, 2005, 29, 269-275,

“Second assessment used with AgTi treated as range of homogeneity”,

 There is some small disagreement about some of the invariant        temperatures.                                                           

 

Ag-Tl

 

H. L. Lukas, unpublished reassessment based on data set collected in        Zimmermanns thesis 1976 (1994).

                                         

Ag-V                 

 

Data for the Ag-V system are from an unpublished assessment of

J. Korb (2004) supplied by GTT to SGTE in 2005.

 

Ag-W                

 

Data for the Ag-W system are taken from an unpublished assessment of

K. Hack (2005), based on an assessment of

M. Vijayakumar, A. M. Sriramamurthy, S. V.  Nagender Naidu,

CALPHAD 1988, 12(2), 177).

The data were supplied by GTT to SGTE in 2005.

 

Ag-Zn                

 

The data for the Ag-Zn system are from the unpublished assessment by Suzana Fries and Victor Vitusiewicz, Jan 2002.  This is a revision of the assessment by

T. Gomez-Acebo: CALPHAD, 1998, 22(2), 203-220. “Thermodynamic assessment of the Ag-Zn system”.

Note: The latest assessment of V T. Vitusiewicz, S. G. Fries, U. Hecht, A. Drevermann, S. Rex: Int. J. Mat. Res., 2006, 97(5), 556-568, “Enthalpies of formation measurements and thermodynamic description of the Ag-Cu-Zn system”, has not been used, because some of the data and models are incompatible with other data in the database.

 

Ag-Zr

 

 SGTE Noble metals database compiled by P. J.  Spencer.  

 

Al-As                

 

I Ansara and D Dutartre: CALPHAD, 1984, 8(4), 323-342.

 “Thermodynamic study of the Al-Ga-As-Ge system”.

 

Al-Au                

 

J. L. Murray, H. Okamoto and T. B. Massalski: Bulletin of Alloy Phase Diagrams, 1987, 8(1), 20. “The Al-Au (Aluminium-Gold) system”);

Modified by A. T. Dinsdale to be consistent with the SGTE unary

data and to prevent high temperature stability of fcc phase.

Small change was made to data for Al-Au by T. Jantzen (2006) to

prevent formation of FCC_A1 in centre of phase diagram.

Compound data updated by Michael Schick (GTT) to smooth Cps

                        T max = 2700 K

 

Al-B                

 

D. Mirkovic, J. Groebner, R. Schmid-Fetzer, O. Fabrichnaya, and

H. L. Lukas:  J. Alloys Compounds, 2004, 384, 168-174. “Experimental

study and thermodynamic reassessment of the Al-B system”.

                        T min = 500 K

 

Al-Be

 

Zhu Pan, Yong Du, B. Y. Huang, Yong Liu, R. C. Wang :

CALPHAD, 2004, 28, 371-378.

 

Al-Bi                

 

  1. J. McAlister: Bulletin of Alloy Phase Diagrams, 1984, 5, 247-250.

“The Al-Bi (Aluminium-Bismuth) System”.

 

Al-C                

 

J. Gröbner, H. L. Lukas, and F. Aldinger: CALPHAD, 1996, 20, 247-254. “Thermodynamic Calculation of the Al-Si-C System”.

 

 

Al-Ca                 

 

D. Kevorkov, R. Schmidt-Fetzer, A. Pisch, F. Hodaj, C. Colinet:

Z. Metallkunde, 92, 953-58(2001). – Updated 15/6/16

                        T max = 2600 K

 

Al-Ce                

 

Data for the Al-Ce system are from an unpublished assessment of

Cacciamani et al, representing a revision of the assessment

published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2,

 eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

                        T max = 2750 K

 

Al-Co

 

N. Dupin, I. Ansara:

La Revue de Metallurgie-CIT/Sceince et Genie des Materiaux,

September 1998, 1121-1129,

"Thermodynamic evaluation of the system Al-Co"

There is a little uncertainty about the B2 data.

The invariances are nearly the same as in the paper.

                        T max = 3850 K

                     

Al-Cr                

 

Y. Liang, C. Guo, C. Li, Z. Du: Journal of Alloys and Compounds, 2008, 460,

314-319, “Thermodynamic modeling of the Al-Cr system.”

 

Al-Cu                

 

Taken from ACMSZ-1, based on unpublished assessment of N. Saunders published in the COST507 final report

COST507 Thermochemical Database for Light Metal Alloys, Volume 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499 Updates from V.T. Witusiewicz, U. Hecht, S.G. Fries, S. Rex:

JALCOM 385 (2004) 133-143 (Al-Cu) and H. Liang, Y. A. Chang:

JPE 19 (1998) 25-37 (Al-Cu-Zn).

 

Al-Dy

 

G. Cacciamani, S. De Negri, A. Saccone, R. Ferro:

 Intermetallics 11, (2003) 1135-1151.

Data provided by Thermodata, December 2006.

                        T max = 3480 K

 

Al-Er

 

Data from Thermodata supplied to SGTE December 2007

G.  Cacciamani, A. Saccone, S. De Negri, R.  Ferro:

J. Phase Equilibria,  23, 1 (2002) 38-50.

High temperature miscibility gap in liquid . but not really a problem.

                        T max = 5700 K

 

Al-Fe                

 

Data for the Al-Fe system were taken from an unpublished assessment of

M. Seiersten published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

                        T min = 375 K

 

Al-Ga                

 

A Watson: CALPHAD 1992, 16(2), 207-217. “Re-assessment of phase

diagram and thermodynamic properties of the Al-Ga system”.

                        T max = 3260 K

 

Al-Gd

 

G. Cacciamani, S. De Negri, A. Saccone, R. Ferro:

Intermetallics 11 (2003) 1135-1151.

Data provided by Thermodata, December 2006.

                        T max = 3890 K

 

Al-Ge                

 

I  Ansara, J. P. Bros, M. Gambino:  CALPHAD 1979, 3(3), 225. “Thermodynamic analysis of the germanium-based ternary systems”.

 

Al-Hg                

 

A J McAlister: Bull. Alloy Phase Diagrams, 1985, 6, (3), 219-221.

“The Al-Hg (Aluminum Mercury) System”.

 

Al-Ho

G. Cacciamani, S. De Negri, A. Saccone, R. Ferro:

Intermetallics 11 (2003) 1135-1151.

Data provided by Thermodata, December 2006.

                        T max = 4050 K

 

 

Al-In                

 

The data for the  Al-In system were assessed by Coughanowr, Thesis, University of Florida; but reported in the paper by

I Ansara, C Chatillon, HL Lukas, T Nishizawa, H Ohtani,

K Ishida, M Hillert, B Sundman, BB Argent, A Watson, TG Chart,

and T. Anderson:  CALPHAD 1994, 18(4), 177-222. “A binary

database for III-V compound semiconductor systems”.

 

Al-La

 

JX Wang : CALPHAD, 1994, 18(3), 269-272.

“Thermodynamic optimisation for the Al-La system”.

                        T min = 460 K

                        T max = 2300 K

 

Al-Li                

 

Data for the Al-Li system are taken from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

Compound data updated by Michael Schick (GTT) to smooth Cps 2016

                        T max = 4040 K

 

Al-Mg     

 

Update from ACMSZ, based on Y. Zhong, M. Yang, Z.-K. Liu:

CALPHAD 29 (2005) 303-311 with some modifications.

 

Note, Optimized dataset for AlMg_EPSILON from J. Korb  (only for FactSage).

 

Al-Mn                

 

A Jansson: Report TRITA-MAC-0462, May 1991, Materials Research

Centre, Royal Institute of Technology, Stockholm.

                        T min = 380 K

                        T max = 5200 K

 

Al-Mo     

 

Data for the Al-Mo system are taken from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

Note: Data for the bcc_b2 phase (Al-Mo binary) were derived by

B Sundman, 2001.

                        T min = 340 K

                        T max = 5050 K

 

Al-N                

 

Data for the Al-N system are taken from an unpublished assessment of

H. L. Lukas published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

Note: The bcc_a2 phase appears to be stable at high temperatures.

 

Al-Nb                

 

C  Servant and  I. Ansara: J. Chim. Phys. 1997, 94, 869-888.

“Thermodynamic assessment of the Al-Nb system”.

                        T max = 4280 K

 

Al-Nd                

 

Data for the Al-Nd system are from an unpublished assessment of Cacciamani et al, representing a revision of the assessment

published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

                        T max = 1860 K

 

Al-Ni

 

I  Ansara, N. Dupin, H. L. Lukas and B. Sundman:

J. Alloys Compounds 1997, 247, 20-30.

“Thermodynamic assessment of the Al-Ni system”.

Compound data updated by Michael Schick (GTT) to smooth Cps

                        T max = 5050 K

 

Al-P                

 

The data for the Al-P systems were from an unpublished assessment of

H. L. Lukas reported in the paper by

I  Ansara, C Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani,

K Ishida, M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart,

T Anderson:  CALPHAD 1994, 18(4), 177-222.

A binary database for III-V compound semiconductor systems”.

Note: New dataset for AlP/ZINCBLENDE/ and optimized parameters

           for Al-P in LIQUID

Al-Pb                

 

S.-K. Yu, F. Sommer and B. Predel:  Z. Metallkde, 1996, 87(7), 574-580. “Isopiestic measurements and assessment of the Al-Pb system”.

 

Al-Pr

 

F. Yin, X.  Su, Z. Li, P. Zhang:  Z. Metallkde, 92, 5 (2001) 447-450.

Data from Thermodata - supplied to SGTE December 2007.

                        T max = 1760 K

 

Al-Pt

 

Kaisheng Wu and Zhangpeng Jin: J. Phase Equil.; 2000, 21(3), 221-226.

 

Al-Ru                

 

Data for the Al-Ru systema re taken from an unpublished assessment by

P. Y. Chevalier and E. Fischer (1996) supplied to SGTE in Januray 2005.

                        T max = 4890 K

 

Al-Sb                

 

C A. Coughanowr, U. R. Kattner, T. J. Anderson: CALPHAD, 1990, 14, (2), 193-202. “Assessment of the Al-Sb System”.

 

Al-Sc

 

G. Cacciamani, P. Riani, G.  Borzone,  N. Parodi, A.  Saccone, R.  Ferro,

A. Pisch, R. Schmid-Fetzer:  Intermetallics, 7 (1), 101-108 (1999). "Thermodynamic measurements and assessment of the Al-Sc system".

 

Al-Si                

 

Update from ACMSZ based on J. Groebner, H. L. Lukas, F.  Aldinger, CALPHAD 20 (1996) 247-254. Some additions.

 

Al-Sm

 

A Saccone, G.  Cacciamani, D. Maccio, G.  Borzone, R., Ferro, R.:

Intermetallics, 6 (1998) 201-215.

Data supplied by Thermodata to SGTE - December 2007.

 

Al-Sn                

 

S. G.-Fries, H. L. Lukas, S. Kuang and G. Effenberg (1991):

“Calculation of the Al-Zn-Sn Ternary System”.

In F. Hayes (ed): Proc. of User Aspects of Phase Diagrams, The Institute of Metals, London, 280-286 (1991).

 

Al-Sr

 

Chong Wang, Zhanpeng Jin, Yong Du:

J. Alloys Compounds; 2003, 358, 288-293.

                        T max = 3090 K

 

Al-Ta                

 

Y. Du,  R. J.  Schmid-Fetzer: J. Phase Equil. 1996, 17(4), 311-324. “Thermodynamic modelling of the Al-Ta system”.

Note: Some interaction parameters for the sigma phase were missing

In the original paper.

                        T max = 5940 K

 

Al-Th                

 

Z. S. Li, X. J. Liu, M. Z. Wen, C. P. Wang, A. T. Tang, F. S. Pan:

J. Nucl. Mater., 396, 170-75(2010).

 

Al-Ti                

 

Data for the Al-Ti system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

Modifications to smooth Cps of stoichiometric phases and compound

unaries – Michael Schick (GTT) 19/7/16

                        T max = 4700 K

 

Al-V                

 

Data for the Al-V system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Al-W                

 

Data for the Al-W system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

                        T max = 4610 K

Al-Y                

 

S. Liu, Y. Du, H. Chen: CALPHAD, 2006, 30, 334-340.

“A Thermodynamic reassessment of Al-Y system”.

 

Al-Zn                

 

Updated from ACMSZ. Source of data: S. an Mey, Z. Metallkde.; 1993,

84(7), 451-455, “Re-evaluation of the Al-Zn system”, with additions.

 

Al-Zr                

 

Data for the Al-Zr system are from a reoptimisation undertaken

By Michael Schick (GTT) to smooth compound Cps. It’s based on the

assessment of N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

                        T max = 5770 K

 

As-Au                

 

SGTE Noble metals database, compiled by Philip Spencer (2007).

 

As-Ga                

 

C  Chatillon, I. Ansara, A. Watson and B. B. Argent: CALPHAD, 1990,

14(2), 203-14. “Re-assessment of the thermodynamic properties and

 phase diagrams of the Ga-As and In-As systems”.

                        T max = 3260 K

 

As-Ge                

 

I. Ansara and D. Dutarte: CALPHAD, 1984, 8(4), 323-342.

 

As-In                

 

C Chatillon, I. Ansara, A. Watson and B. B. Argent: CALPHAD, 1990,

14(2), 203-14. “Re-assessment of the thermodynamic properties and

phase diagrams of the Ga-As and In-As systems”.

 

As-Ni

 

S. Uhland, H. Lechtman, L. Kaufman: CALPHAD, 25, 1 (2001) 109-124, “Assessment of the As-Cu-Ni system, an example from archaeology”.

       

As-P                

 

I Ansara, C Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida,

M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart, T. Anderson: CALPHAD 1994, 18(4), 177-222. “A binary database for III-V compound semiconductor systems”.

 

As-Pb                

 

H Rannikko,S  Sundström, P Taskinen: Thermochimica Acta, 216, 1-14 (1993), “An Optimised Equilibrium Phase Diagram and Solution Thermodynamics of Arsenic-Lead Alloys”.

 

As-Pt                

 

The thermodynamic assessment of the As-Pt system the analysis of  the Pt/GaAs interfacial reactions,

Mei Li, Changrong Li, Fuming Wang, Weijing Zhang:

Journal of Alloys and Compounds 437 (2007) 71-79.

 

As-Sb                

 

I Ansara, C Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida,

M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart, T. Anderson:  CALPHAD 1994, 18(4), 177-222. “A binary database for III-V compound semiconductor systems”.

 

Au-B     

 

Data for the Au-B system are from an unpublished assessment by

P. Y. Chevalier (1998) supplied to SGTE, January 2005.

 

Au-Bi                

 

C  Servant, E. Zorro, B. Legendre:  CALPHAD, 2006, 30, 443-446, “Thermodynamic reassessment of the Au-Bi system”.

 

Au-C                

 

SGTE Noble metals database compiled by Philip Spencer (2007).

 

Au-Co                

 

Data for the Au-Co system are from an unpublished assessment of

J. Korb (2004) supplied by GTT to SGTE in 2005.

 

Au-Cr

 

Data from the noble metals database compiled by P. J. Spencer  ~ 2000.

           

Au-Cu     

 

B Sundman, SG Fries, and WA Oates:  CALPHAD, 1998, 22, (3), 335-354.

“A Thermodynamic Assessment of the Au-Cu System - An example illustrating the need for more physics in CALPHAD Solution Models”.

Two different datasets are given in the paper. The adopted assessment

was derived by considering the chemical ordering.

 

Au-Ga

 

J. Wang, Y.J. Liu, L.B. Liu, H.Y.Zhou, Z.P. Jin: CALPHAD, 35,

242-48 (2011). D0_24 renamed DHCP.

                        T max = 3280 K

 

Au-Ge                

 

P. Y. Chevalier: Thermochimica Acta, 1989, 141, 217-226.

“A Thermodynamic Evaluation of the Au-Ge and Au-Si systems”.

 

Au-Hf                

 

ZM Du, L Yang: J. Alloys Comp., 2003, 353, 213-216.

“Thermodynamic assessment of the Au-Hf system”.

Modified by atd - 2/11/2010  to avoid AUHF_BETA being stable at high temperatures for pure Au.  Small  change to AUHF_ALPHA also necessary

to compensate,  spurious liquid - liquid miscibility gap above 4000 K.

                        T max = 3690 K

 

Au-In                

 

Based on H. S. Liu et.al.:  CALPHAD, 27 (2003) 27-37.

 

Au-Ni                

 

J. Wang, X.-G. Lu, B. Sundman, X. Su:  CALPHAD, 2005, 29, 263-268.

 

Au-Pb                

 

J. P. Nabot:  Thesis, LTPCM, Grenoble.

Note: The hcp_a3 data were added by A. T. Dinsdale (October 2006).

                        T max = 3060 K

 

 

Au-Pd                

 

SGTE Noble metals database, compiled by Philip Spencer.

 

Au-Pr

 

J. Wang, X.-G. Lu, B. Sundman, X.  Su:

Journal of Alloys and Compounds, 364 (2004) 117-120,

Data provided by Thermodata, December 2006,

Incorrect reference: Zhenmin Du, Cuiping Guo, Dongxian Lu, JALCOM.....

                        T max = 3560 K

Au-Rh

SGTE Noble metals database, compiled by Philip Spencer.                 

 

Au-Ru

 

SGTE Noble metals database, compiled by Philip Spencer.                 

 

Au-Sb                

 

E. Zoro, C. Servant, B. Legendre: Journal of Phase equilibria and

Diffusion v 28, n 3, p 250-7, June 2007,

"Thermodynamic Modelling of the Ag-Au-Sb Ternary system",

with some additions.

 

Au-Si                

 

The data for the Au-Si system is from an unpublished update by

P. Y. Chevalier to his earlier assessment:

P.Y. Chevalier: Thermochimica Acta, 1989, 141, 217-226.

“A Thermodynamic Evaluation of the Au-Ge and Au-Si systems”.

 

Au-Sn                

 

H. S. Liu, C. L. Liu, K. Ishida, Z.P.  Jin:  J. Electron. Mater., 2033, 32, 1290, referred to by X. J. Liu, M. Kinaka, Y. Takaku, I. Ohnuma, R. Kainuma,

K. Ishida:  J. Electr. Mater.; 2005, 34(5), 670-679,

Modified to be consistent with adopted unary data - at 21/10/2005.

Changes to unaries from intermetallics by Michael Schick to smooth Cps.

 

Au-Te                

 

Y. Feutelais, D. Mounai, J. R. Didry, B. Legendre: J. Phase Equil.,

1994, 15(4), 380-385. “The Gold-Tellurum system”.

Note: It was necessary to change the AuTe2 data considerably from

that published in order to reproduce any of their diagrams.

                        T max = 1740 K

Au-Ti 

 

Weikun Luo, Zhanpeng Jin, Tao Wang: CALPHAD 2001, 25(1), 19-26,        "Thermodynamic assessment of the Au-Ti system".

                         

Au-Tl                

 

P.Y. Chevalier: Thermochimica Acta, 1989, 155, 211-225 ,

“A Thermodynamic Evaluation of the Au-Sb and Au-Tl systems”.

Note: Interaction data for the hcp phase were included to prevent

the phase from becoming incorrectly stable.

 

Au-Zn

 

Solders database – H. S. Liu, K. Ishida, Z. P. Jin, Y. Du:

Intermetallics 2003, 11, 987-994.

 

Au-Zr

 

X. Su, F. Yin, Z. Li and Y. Shi: Z. Metallkd., 2000, 91, 744-747 , ”Thermodynamic Assessment of the Zr-Au System”.

 

B-Ba

 

Shunli Shang, Tao Wang and Zi-Kui Liu:  CALPHAD 2007, 31, 286-291.

                                               

B-C     

 

Data for the B-C system were taken from the assessment of

H. Bittermann published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

B-Ca

 

Shunli Shang, Tao Wang and Zi-Kui Liu:  CALPHAD 2007, 31, 286-291.

 

B-Co                

Y. Du, J. C. Schuster, Y.A. Chang, Z. Jin, B. Huang:

 Z. Metallkd. 93 (2002) 1157-1163.

                        T max = 4070 K

 

B-Cr                 

The data for the B-Cr system are from an unpublished assessment by

Li-Mei Pan, (1991). Data for the bcc_a2 phase were modified by

O. Fabrichnaya (2001) to allow interstitial solution of B in bcc Cr.

 

B-Cu                

W. W. Zhang, Y. Du, H. Xu, W. Xiong, Y. Kong, W. Sun, F. Pan, A. Tang:

J. Phase Equilib. Diffus., 30, 480-84 (2009).

 

B-Fe                

 

The data for the B-Fe system are taken from the assessment of

Hallemans et al (1994-1995):

B. Hallemans, P. Wollants, J. R. Roos: J. Phase Equil. 1995, 16(2), 137-149. ”Thermodynamic assessment of the Fe-Nb-B phase diagram”, and

B. Hallemans, P. Wollants, J. R. Roos: Z. Metallkde, 1994, 85, 676-682. “Thermodynamic re-assessment and calculation of the Fe-B phase diagram”.

 

B-Hf     

 

H. Bittermann, P. Rogl: J. Phase Equil., 1997, 18(1), 24-47.

“Critical assessment and thermodynamic calculation of the ternary

system Boron-Hafnium-Titanium (B-Hf-Ti)”.

 

B-Mg                

 

Z. K. Liu, Y. Zhong, D. G. Schlom: CALPHAD, 2001, 25(2), 299-303. “Computational thermodynamic modeling of the Mg-B system”.

 

B-Mn

W.  Sun, Y. Du, S. Liu, B. Huang, C. Jiang: JPED, 2010, 31(4), 357-364.       “Thermodynamic assessment of the Mn-B system".

 

B-Mo     

 

The data for the B-Mo system are from an unpublished assessment by

Li-Mei Pan, (1991).

                           

B-N     

 

Data for the B-N system were taken from the assessment of

H. Wen and H. L. Lukas published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

 

B-Nd     

 

B. Hallemans, P. Wollants and J. R. Roos: J. Phase Equilib. 1995, 16(2),

137-149. “Thermodynamic assessment of the Fe-Nb-B phase diagram”).

                        T max = 2850 K

B-Ni     

 

The data for the B-Ni system are from C. E. Campbell and U. R. Kattner:

 JPE 1999, 20(5), 485-496. “A thermodynamic assessment of the Ni-Al-B system".

                        T max = 4220 K

B-Sc

P.Y. Chevalier, 1998

Data for entropy contribution in intermetallic phases corrected by

Peter Franke.

 

B-Si                

 

Data for the B-Si system were taken from the assessment of

S. G. Fries and H. L. Lukas published in the COST507 final report :

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

B-Sr

 

Shunli Shang, Tao Wang and Zi-Kui Liu:  CALPHAD 2007, 31, 286-291.

                                              

B-Ti                

 

Data for the B-Ti system are from an unpublished assessment of

C Batzner published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

B-U

 

P. Y. Chevalier, E. Fischer:  J. Nucl. Mater.; 2001, 288, 100-129. “Thermodynamic modelling of the C-U and B-U binary systems”.                 

                        T max = 4170 K

 

B-V                

 

The data for the B-V system are from an unpublished assessment by

Li-Mei Pan, (1991).

 

B-W                

 

H. Duschanek, P. Rogl:  J. Phase Equil., 1995, 16(2), 150-161.

“Critical Assessment and Thermodynamic Calculation of the

Binary System Boron-Tungsten (B-W)”.

 

B-Zr

 

Thermodata data supplied to SGTE - July 2005.

                           

Ba-Cu                

 

Konetzki R., Schmid-Fetzer R., Watson A., Argent B., Fries S. G., and

Lukas H. L.: Z. Metallkde., 1993, 84(8), 569-573.

“The Ba-Cu binary system”.

Compound data updated by Michael Schick (GTT) to smooth Cps

 

Ba-Eu                

 

H. Okamoto:  J. Phase Equilibria 12 (1991) 698.

 

Ba-Mg

 

X. Ren, C. Li, Z. Du, C. Guo, S. Chen: Int. J. Mater. Res., 104, 358-363 (2013).

“Thermodynamic modeling oft he Ba-Mg binary system“.

 

Ba-Ru

 

The data for the Ba-Ru system are from an unpublished assessment of

P. Y. Chevalier and E. Fischer (1995) supplied to SGTE in January 2005.

                        T max = 7000 K

Ba-Sr

 

The data for the Ba-Sr system are from an unpublished work of

 O. Fabrichnaya, 2001.

 

Ba-Y

R. Konetzki, R. Schmid-Fetzer, S. G. Fries, H. L. Lukas:

 Z. Metallkd. 85 (1994) 748-755.

 

Bi-Cu      

 

Data for the Bi-Cu system are from the assessment by

O Teppo, J  Niemela, and P Taskinen: Report TKK-V-B50, 1989, HUT.

The same authors also re-assessed the data later on:

O Teppo, J  Niemela, P Taskinen: Thermochim.Acta, 1990, 173, 137-150.

“An Assessment of the Thermodynamic Properties and Phase Diagram

of the system Bismuth-Copper”.

 

Bi-Ga                

 

Data for the Bi-Ga system are from the assessment of

C. Girard: Thesis, Marseille 1985.

                        T max = 3280 K

Bi-Gd

 

J. Wang, C. Li, C. Guo, Z. Du, B. Wu: CALPHAD, 41 1-5 (2013).

“Thermodynamic assessmant oft he Gd-Bi and Ho-Bi systems“.

 

Bi-Ge                

 

P. Y. Chevalier: Thermochimica Acta, 1988, 132, 111-116.

“Thermodynamic Evaluation of the Bismuth-Germanium system”.

 

Bi-Hg                

 

Data for the Bi-Hg system are from an unpublished assessment of

 S. A. Mucklejohn.

 

Bi-Ho

 

J. Wang, C. Li, C. Guo, Z. Du, B. Wu: CALPHAD, 41 1-5 (2013).

“Thermodynamic assessmant oft he Gd-Bi and Ho-Bi systems“.

 

Bi-In                

 

The data for the Bi-In system are based on the assessment of

P. Y. Chevalier: CALPHAD 1989, 12(4), 383-392.

“A thermodynamic evaluation of the Bi-In system”,

 which has also been quoted by

D. Boa, I. Ansara: Thermochimica Acta 1998, 314, 79-86.

“Thermodynamic Assessment of the Ternary System Bi-In-Pb”.

Note: Some of the parameters in the database are slightly different

from those published. The data were modified by A. T. Dinsdale (2000)

to correct for an error in the data for BiIn2. Data for the hcp_a3 and

tet_alpha1 phases were added by A. T. Dinsdale (October 2006).

Updates from SOLDERS database - AW 2010.

 

Bi-K                

 

Data for the Bi-K system were taken from an assessment of

PY Chevalier: Thermodata report 54.90/PYC/mm, March 1990.

                        T max = 4470 K

 

Bi-Nd

 

C. P. Wang, H. L. Zhang, A. T. Tang, F. S. Pan, X. J. Liu:

 J. Alloys Compd.,  502(1), 43-48, (2010).

“Thermodynamic assessments of the Bi-Nd and Bi-Tm systems”.

 

 

Bi-Ni                

 

Solders database - Assessed by Vassilev, Romanowska and Wnuk,

private communication, 2006 – incl. updates.

 

Bi-Pb                

 

The data for the Bi-Pb system were from an unpublished assessment by

H. L. Lukas reported by D. Boa, I. Ansara: Thermochimica Acta 1998, 314,

79-86. “Thermodynamic Assessment of the Ternary System Bi-In-Pb”.

Note: Data for the tet_alpha1 phase and tetragonal_a6 phases were added

by A. T. Dinsdale (October 2006).

 

Bi-Pd                

 

Solders database - J. Vrestal, J. Pinkas, A. Watson, A. Scott, J. Houserova,

A. Kroupa: CALPHAD 30(1), 14-17 (2006).

"Assessment of the Thermodynamic Properties and Phase Diagram of the

Bi-Pd System".

 

Bi-Sb                

 

H. Ohtani, K. Ishida: J. Electronic Materials, 1994, 23(8), 747-755.

“A Thermodynamic Study of the Phase Equilibria in the Bi-Sn-Sb System”.

 

Bi-Se

 

Y. Chen, Y. Liu, M. Chu, L. Wang: J. Alloys Compd., 617, 423-28(2014).

“Phase diagrams and thermodynamic descriptions for the Bi-Se and

Zn-Se binary systems”.

The liquid is descriped with an associate specie.

 

Bi-Si                

 

R. W. Olesinski, G. J. Abbaschian: Bulletin of Alloy Phase Diagrams

1985, 6(4), 359-361. “The Bi-Si (Bismuth-Silicon) System).

 

Bi-Sn                

 

Solders database - From J. Vizdal, February 2006. Modified version of assessment of H. Ohtani, K. Ishida:  Journal of Electronic Materials, 1994, 23(8), 747-755 (More significant places reported by D. Malakhov, X. J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, K. Ishida: Mat. Trans. 2002, 43, 1879).

Later experimental work by Vizdal showed that the solubility of Bi in bct_Sn is rather lower than originally thought. This was remodelled and caused minor changes to the data for the liquid and rhombohedral phases.

 

Bi-Tb

 

Wang, S. L., Hu, Z. B., Gao, F., Wang, C. P., Liu, X. J.:  Journal of Phase Equilibria and Diffusion, 32(5), 441-446 (2011).

"Thermodynamic assessments of the Bi-Tb and Bi-Y systems".

       

Bi-Tl                

 

Data for the Bi-Tl system were from an unpublished assessment of

HL Lukas based on an earlier assessment of

Zimmermann B., Henig E. T., Lukas H. L.: Z. Metallkde., 1976, 67(12),

815-820. “The system Ag-Bi-Tl, calculation of part of the system, binary optimisations (Ag-Bi, Ag-Tl, Bi-Tl, Ag-Bi-Tl)”.

 

Bi-Tm

 

C. P. Wang, H. L. Zhang, A. T. Tang, F. S. Pan, X. J. Liu:  Journal of Alloys

and Compounds, Vol. 502(1), 43-48, (2010).

“Thermodynamic assessments of the Bi-Nd and Bi-Tm systems”.

 

Bi-Y

 

Wang, S. L., Hu, Z. B., Gao, F., Wang, C. P., Liu, X. J.: Journal of Phase Equilibria and Diffusion, 32(5), 441-446 (2011).

"Thermodynamic assessments of the Bi-Tb and Bi-Y systems".

 

Bi-Zn                

 

D. Malakhov: CALPHAD 2000, 24(1), 1-14.

“Thermodynamic Assessment of the Bi-Zn System”.

 

C-Co                

 

Data for the C-Co system were assessed by

A. Fernandez Guillermet:  Z. Metallkde., 1987, 78, 700-9.

 “Thermodynamic analysis of the Co-C system”.

This assessment was referred to by A. Weidling and B. Jansson:

 CALPHAD 1997, 21(3), 321-333.

 “A Thermodynamic Evaluation of the Co-Cr and the C-Co-Cr systems”.

 

C-Cr                

 

Data for the C-Cr system are from the assessment of

B. J. Lee: CALPHAD 1992, 16(2), 121-149.

“On the Stability of Cr carbides”.

This assessment was referred to by A. Weidling and B. Jansson:

CALPHAD 1997, 21(3), 321-333 .

“A Thermodynamic Evaluation of the Co-Cr and the C-Co-Cr systems”.

Note: Data for the CBCC_A12 and CUB_A13 phases are from the assessment of B. J. Lee: Metall. Trans. A, 1993, 24A, 1017-1025.

“A Thermodynamic Evaluation of the Fe-Cr-Mn-C system”.

 

C-Cu                

 

The data for the C-Cu system are from the unpublished assessment

by A. T. Dinsdale, January 2004.

 

C-Fe                

 

Data for the C-Fe system are taken from the assessment of

P. Gustafson: Report TRITA-MAC-0237, October 1984,

Scand. J. Metall., 1985, 14, 259-267.

“A Thermodynamic Evaluation of the Iron-Carbon system”.

Data for other phases not stable in the binary system are taken from:

W. M. Huang:  Report TRITA-MAC 411 (Rev 1989);

Metall. Trans. A, 1990, 21A, 2115-2123.

“A Thermodynamic Assessment of the Fe-Mn-C system”.

W. M. Huang: Report TRITA-MAC 441 (1990),

Metall. Trans. A, 1991, 22A(9), 1911-1920.

 “Thermodynamic Properties of the Fe-Mn-V-C System”.

B. J. Lee (1991), unpublished revision of data for the C-Cr-Fe-Ni system.

H. Du, M. Hillert: Z. Metallkde., 1991, 82(4), 310-316.

“An Assessment of the Fe-C-N System”.

H. Du: J. Phase Equilibria, 1993, 14(6), 682-693.

“A Reevaluation of the Fe-N and Fe-C-N systems”.

Note: The data for the V3C2 phase were modified to be 10 J/mol more positive than those for the M3C2 phase.  The data for the liquid data were modified by Tatjana Buhler to prevent bcc phase from becoming stable

at high temperatures.

                        T max = 5550 K

 

C-Hf                

 

H. Bitterman, P. Rogl: J. Phase Equil. 1997, 18(4), 344-356.

“Critical assessment and thermodynamic calculation of the binary

system Hafnium-Carbon (Hf-C)”.

 

C-Ir                

 

Data for the C-Ir system are from an unpublished assessment of

 J. Korb (2004) supplied by GTT to SGTE in 2005.

                        T max = 4180 K

 

C-Mn                

 

The data for the C-Mn system were taken from the assessment of

W. Huang:  Report TRITA-MAC 411 (Rev 1989);

Metall. Trans. A, 1990,  21A, 2115-2123.

 “A Thermodynamic Assessment of the Fe-Mn-C system”.

W. Huang: Report TRITA-MAC 441 (1990),

Metall. Trans. A, 1991, 22A(9), 1911-1920,

 “Thermodynamic Properties of the Fe-Mn-V-C System”.

 

C-Mo                

 

The data for the C-Mo system were from the assessment of

J.O. Andersson: Report TRITA-MAC 0317,(1986),

CALPHAD 1988, 12, 1-8.  “Thermodynamic properties of Mo-C”. Enhancements were made by

J.O. Andersson: Report TRITA-MAC 0321 (1986),

CALPHAD 1988, 12(1), 9-23. “A Thermodynamic Evaluation

of the Fe-Mo-C system”.

CA Qui:  Report TRITA-MAC 482 (1992),

M Hillert, CA Qiu:  J. Phase Equil., 1992, 13(5), 512-521.

 “A Reassessment of the Fe-Cr-Mo-C system”.

BCC-parameters were changed by Peter Franke (2008) to prevent

bcc becoming more stable than the liquid below 6000 K.  G(CEMENTITE,MO:C,0) changed by Peter Franke in order to prevent cementite becoming more stable than the liquid below 6000 K.

 

C-N                

 

The data for this system are assumed to be ideal.

 

C-Nb

 

Data for the C-Nb system are taken from the assessments of

WM Huang: Mater. Sci. and Techn. 1990, 6(8), 687-694.

“Thermodynamic Evaluation of Niobium-Carbon system”.

 WM Huang: Report TRITA-MAC 390 (1989);

 Z. Metallkde. 1990, 81(6), 397-404.

“A thermodynamic evaluation of the Fe-Nb-C system”.

 Note - the bcc phase becomes stable incorrectly at high temperatures.

                        T max = 4400 K

 

C-Ni                

 

B. J. Lee: CALPHAD, 1992, 16(2), 121-149.

 “On the stability of Cr carbides”.

Data for bcc modified by Peter Franke. With original data bcc becomes more stable than the liquid at higher temperatures but with the present change this occurs above 6000 K.

These data adopted for compatibility with ternary systems.

                        T max = 5980 K

 

C-Os                

 

Data for the C-Os system are from an unpublished assessment of

J. Korb (2004) supplied by GTT to SGTE in 2005.

 

C-P                

 

P. Gustafson:  Inst. Met. Res. (Report IM-2549, 1990)).

 

C-Pb                

 

Data for the C-Pb system are from an unpublished assessment of

T. G. Chart, NPL 1987.

 

C-Pd                

 

Data for the C-Pd system are from an unpublished assessment of

J. Korb (2004), updated byT. Jantzen (2005), supplied by GTT to

SGTE in 2005.

                        T max = 5860 K

 

C-Pt                

 

Data for the C-Pt system are from an unpublished assessment of

 J. Korb (2004), updated by T. Jantzen (2005), supplied by GTT to

SGTE in 2005.

 

C-Pu

 

E. Fischer: CALPHAD, 32, 371-77(2008).

The modelling of PUC_B1 is not ok. The standard FCC_A1 model

should be used. The Pu end point of PUC_B1 is identical to fcc-Pu, but

here it is modelled relative to bcc-Pu.                                     

 

C-Rh                 

 

Data for the C-Rh system are from an unpublished assessment of

J. Korb and T. Jantzen (2004), supplied by GTT to SGTE in 2005.

 

C-Ru                

 

Data for the C-Ru system are from an unpublished assessment of

J. Korb and T. Jantzen (2004), supplied by GTT to SGTE in 2005.

 

C-Si                

 

J. Lacaze, B. Sundman: Metall. Trans. A, 1991, 22A, 2211.

“An assessment of the Fe-C-Si system”.

 Note, The data were derived specifically for use with steel systems

and should be used with care for other types of materials. Data for

the hcp_a3 phase were added by

A. T. Dinsdale (October 2006).

 

C-Ta

 

K. Frisk, A. Fernandez  Guillermet: J. Alloys and Compounds,

1996, 238, 167-179.

                                                      

C-Ti                 

 

The data for the C-Ti system are from an unpublished assessment of Balasubramanian, (1989).

 

C-U

 

P. Y. Chevalier, E. Fischer:  J. Nucl. Mater., 2001, 288, 100-129, “Thermodynamic modelling of the C-U and B-U binary systems”.

                        T max = 4030 K

                

C-V                

 

The data for the C-V system are taken from the assessment of

WM Huang : Z. Metallkde, 1991, 82, (3), 174-181.

“An Assessment of the V-C System”.

Additional data are from further work by

WM Huang : Report TRITA-MAC 441 (1990),

BJ Lee: Report TRITA-MAC 475 (1991).

 

C-W                

 

The data for the C-W system are taken from the assessment of

P. Gustafson:  Report TRITA 0212 (1985),

Mat. Sci and Tech. 1986, 2(7), 653-658.

 “Thermodynamic Evaluation of Carbon-Tungsten system”.

Data for other phases were assessed by Gustafson as part of

the assessment of high order systems

P. Gustafson:  Report TRITA-MAC 331 (1987),

Z. Metallkde. 1988, 79(7), 421-425.

“A Thermodynamic Evaluation of the C-Fe-Mo-W system”.

 P. Gustafson: Report TRITA-MAC 348 (1987),

Metall. Trans. A 1988, 19(10), 2547-2554.

“A Thermodynamic Evaluation of the C-Cr-Fe-W system”.

P. Gustafson:  Report TRITA-MAC 330 (1987),

Z. Metallkde, 1988, 79(6), 397-402.

“A Thermodynamic Evaluation of the C-Mo-W system”.

 

C-Zn

 

M. Hämäläinen, I. Isomäki:  J. Alloys Comp., 2005, 392, 220-224.

 

C-Zr

 

A. Fernandez Guillermet:  J. Alloys Compounds, 1995, 217, 69-89.

 

Ca-Cu                

 

Risold D., Hallstedt B., Gauckler L. J., Lukas H. L., Fries S. G.:

CALPHAD 1996, 20(2), 151-160.

“Thermodynamic Optimization of the Ca-Cu and Sr-Cu systems”.

 

Ca-Ga                

 

The thermodynamic description of the Ca-Ga system,

J.F. Wang, W.X. Yuan, X. Zhao, W.L. Qian, Z.F. Cai:

CALPHAD, 31 (2007) 120-124.

                        T max = 3440 K

 

Ca-H

 

Wang, N., Sun, W., Sha, C., Hu, B., Du, Y., Sun, L., Xu, H., Wang, H., Liu, S.:       JPED, 33(2), 89-96 (2012).

"Thermodynamic Modelling of the Li-H and Ca-H Systems".

         

Ca-Li

 

Shengjun Zhang, Dongwon Shin and Zi-Kui Liu:

CALPHAD, 2003, 27, 235-241.

 

Ca-Mg                

 

Agarwal R., Lee J. J., Lukas H. L., Sommer F.: Z. Metallkde, 1995, 86, 103-108. “Calorimetric Measurements and Thermodynamic Optimization of the Ca-Mg system”.

 

Ca-Pb

 

M. Notin, L. Bouirden, E. Belbacha, J. Hertz:

J. Less Common Met., 154, 121-35(1989).

Note: Liquid immiscibility at T > 1977 K

 

Ca-Ru                

 

The data for the Ca-Ru system is taken from an unpublished assessment of

P. Y. Chevalier and E. Fischer (1996) supplied to SGTE in January 2005.

 

Ca-Si                 

 

Supplied by Michael Schick, GTT, 2016

Remodelling of M. Heyrman, P. Chartrand,

“Thermodynamic Evaluation and Optimization of the Ca-Si System”.

JPEDAV 27 (2006) 220. – Updated 20/6/2016.

                        T max = 2430 K

 

Ca-Sr

 

Y. Zhong, K. Ozturk, Z.-K. Liu: Journal of Phase Equilibria, 2003, 24(4),

340-346. “Thermodynamic modelling of the Ca-Sr-Zn ternary system”.

 

Ca-Zn                

 

C. O. Brubaker, Z.-K. Liu:, CALPHAD, 25 (2001) 381-390.

                        T max = 3210 K

 

Cd-Ga                

 

Zakulski W., Moser Z., Rzyman K., Lukas H. L., Fries S. G., Sikiennik M., Kaczmarczyk R., Castanet R.:  J. Phase Equil., 1993, 14(2), 184-196. “Thermodynamic studies and phase diagrams of the Cd-Ga-In system”.

 

Cd-Ge                

 

E. Dichi, G. Morgant, B. Legendre and S. G. Fries:

Z. Metallkde., 2001, 92(9), 1078.

                        T max = 1620 K

 

Cd-Hg                

 

Jang J., Silk N. J., Watson A., Bryant A. W., Chart T. G., Argent B. B.: CALPHAD, 1995, 19(3), 415-430. “The thermodynamics and phase diagrams of the Cd-Hg and Cd-Hg-Te systems”.

 

Cd-In                

 

Zakulski W., Moser Z., Rzyman K., Lukas H. L., Fries S. G., Sikiennik M., Kaczmarczyk R., Castanet R.:  J. Phase Equil. 1993,14(2),184-196. “Thermodynamic studies and phase diagrams of the Cd-Ga-In system”.

 

Cd-Pb                 

 

W. Zakulski, Z. Moser:  J. Phase Equilib, 1995, 16(3), 239-242.

W. Zakulski, Z. Moser:  J. Phase Equilib, 1995, 16(6), 484.

“A calculation of the Cd-Pb (Cadmium-Lead) system”.

 

Cd-Sb                

 

L. A. Zabdyr:  CALPHAD 1997, 21(3), 349-358.

“Phase equilibria in ternary Cd-Sb-Zn system”.

 

Cd-Te

 

K. Yamaguchi, K. Hongo, K. Hack, I. Hurtado, D. Neuschuetz:

Mater. Trans. JIM, 41. 790-98(2000).

                        T max =4500 K

 

Cd-Y

 

M. Kurata, Y. Sakamura: J. Phase Equilib., 22, 232-40 (2001).

“Thermodynamic Assessment of System of Actinides or Rare Earth with Cd”.

                        T max = 4650 K

 

Cd-Zn                

 

L. A. Zabdyr:  CALPHAD 1997, 21(3), 349-358.

“Phase equilibria in ternary Cd-Sb-Zn system”.

This represents a revison of his earlier assessment:

L. Zabdyr, W. Zakulski:  Arch. Metall., 1993, 38(1), 3-18.

“Thermodynamics and phase diagram of the Cd-Zn system.

Critical re-evaluation by Lukas method”.

 

Ce-Co                

 

Xuping Su, Weijing Zhnag and Zhenmin Du:

J. Alloys Compounds 1998, 267, 121-127.

“A thermodynamic modelling of the Co-Ce system”.              

                        T max = 2810 K

Ce-Cr

 

Wren Chan, Michael C. Gao, Omer N. Dogan, Paul King, and

Anthony D. Rollett:  Journal of Phase Equilibria and Diffusion, Vol. 30(6),

578-586, (2009). “Thermodynamic assessment of Cr-rare earth systems”.                      

                                                        

Ce-Cu                

 

Zhuang W., Qiao Z. Y., Wei S., Shen J.:  

J. Phase Equilib, 1996, 17(6), 508-521.

 “Thermodynamic Evaluation of the Cu-R (R, Ce, Pr, Nd, Sm)

binary systems”.

Note: Both fcc and bcc phases have missing interactions but may be

 treated as ideal for calculations in the binary system. Care should be

taken when extrapolating to multicomponent  systems.

 

Ce-La

 

B Guo, Z. Du, C. Li: Int. Mater. Res., 101, 1424-31 (2010).

 

Ce-Mg                

 

Data for the Ce-Mg system are from an unpublished assessment of

G. Cacciamani, A. Saccone and R. Ferro published in the COST507

final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2,

 eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

Note: The interaction value for the hcp_a3 phase was modified by

A. T. Dinsdale (2001) to be consistent with the new data for hcp_a3 Ce.

 

Ce-Mn                

 

C. Tang, Y. Du, L. Zhang, H. Xu, Z. Zhu:  JALCOM., 437, 102-106 (2007).

 

Ce-Mo

 

W. Chan, M. C. Gao, O. N. Dogan, P. King:  JPED 31(5) 414-420,        "Thermodynamic assessments of Mo-Ce and Mo-Y systems".

 

Ce-Ni

 

Z. Du, L. Yang, G. Ling:  Journal of Alloys and Compounds,

375 (2004), 186-190,

Data provided by Thermodata, December 2006.

                                                                               

Ce-Sb

 

X. Su, J.-C. Tedenac:  CALPHAD, 30, 455-60(2006).

The fcc interaction from 06Su is not acceptable. It should probably be negative.                                                              

 

Ce-V

 

W. Chan, M. C. Gao, O. N. Dogan, P. King:  JPED 31(5) 425-432,

"Thermodynamic assessment of V-rare earth systems systems".                               

 

Ce-Y                 

 

Cuiping Guo, Zhenmin Du, Changrong Li:  

Int. J. Mat. Res. 2008, 99(6), 650-668.

"Thermodynamic description of the Ce-Mg-Y and Mg-Nd-Y systems".

 

Co-Cr                

 

A. Weidling, B. Jansson: CALPHAD 1997, 21(3), 321-333.

“A thermodynamic evaluation of the Co-Cr and C-Co-Cr systems”.

 

Co-Cu                

 

T. Nishizawa, K. Ishida:  Bull. Alloy Phase Diagrams, 1984, 5(2), 161-5.

“The Co-Cu(Cobalt-Copper) system”.

Note: The data were modified to be consistent with SGTE unary data.

 

Co-Dy

 

Xuping Su, Weijing Zhang, Zhenmin Du, Yuzhi Zhuang:

Report F-96-02 May 1996, University of Science and Technology, Beijing,  Minor discrepancies in invariant reactions probably because of new unary data now used for Dy.

Slight problem with low temperature stability of two of the compounds.

Compounds data updated by Michael Schick (GTT) to smooth Cps

                        T max = 2050 K  

 

Co-Fe                

 

A. Fernandez Guillermet:  Report TRITA-MAC 324 (1986),

High Temp. High Press. 1988, 19, 477-499.  “Critical evaluation of the Thermodynamic Properties of the Iron-Cobalt system”.

Note: Data for M4N phase were introduced by A. T. Dinsdale (1999).

 

Co-Ga

 

J. Groebner, R. Wenzel, G. G. Fischer and R. Schmid-Fetzer:

J. Phase Equil, 1999, 20(6), 615-625.

                        T max 3280 K

 

Co-Gd

 

Zi-Kui Liu, Wejing Zhang, B. Sundman:

J. Alloys and Compounds, 1995, 226, 33-45.

Assessed for use with old unary data for Gd.

Some of the invariances are too low on the Gd side of diagram.

 

Co-Ge                

 

Data for the Co-Ge system are from an unpublished assessment of

J. Korb (2004), supplied by GTT to SGTE in 2005.

 

Co-Hf

 

X. Lu, S. Liu, K. Cheng, Y. Tang, P. Ou, P. Nash, B. Sundman, Y. Du,

F. Zheng: Thermochim. Acta, 608, 49-58 (2015).

“Thermodynamic modeling of the Co-Hf system supported by key

  experiments and firtst-principles calculations”.

 

Co-In                

 

D. Boa, B. K. Dongui, I. Ansara: CALPHAD 25 (2001) 645-650.

 

Co-Mn                

 

WM Huang:  Report TRITA-MAC 386, CALPHAD 1989, 13, 231-242.

“An Assessment of the Co-Mn System”.

 

Co-Mo

 

A. Davydov and U. R. Kattner: J. Phase Equilibria 1999, 20(1), 5-16,

revised  J. Phase Equilibria, 2003, 24(3), 209-211.

This dataset uses the three sublattice model for the mu phase.

                        T max = 3950 K

 

Co-N                

 

A. Fernandez Guillermet, S. Jonsson:  Z. Metallkde., 1992, 83, 21-31. “Predictive Approach to Thermodynamic Properties of Co Nitrides

  and phase stability in the Co-N system”. 

Note: Interaction data for the M4N phase were introduced by

A. T. Dinsdale (1999) for compatibility with the Fe-N data.

 

Co-Nb                

 

Kumar K. C. H., Ansara I., Wollants P., Delaey L.:  

J. Alloys Compd., 1998, 267(1-2), 105-112.

”Thermodynamic Optimisation of the Co-Nb system”).

 

Co-Ni

 

A Fernandez Guillermet:  Report TRITA-MAC 324B (1986),

Z. Metallkde, 1987, 78, 639-647.

“Assessment of the thermodynamic properties of the Ni-Co system”.

 

Co-Pd

 

G. Ghosh, C. Kantner and G. B. Olson:

J. Phase Equil., 1999, 20(3), 295-308,      

The Dataset gives a miscibility gap in the fcc phase at lower

temperatures. It is not clear whether this is correct.                  

 

Co-Pt

 

P. J. Spencer, private communication (1990).

                                

Co-Sb

 

Y. Zhang, C. Li, Z. Du, T. Geng:  CALPHAD, 32, 56-63(2008).

 

Co-Si

 

Lijun Zhang, Yong Du, Honghui Xu, Zhu Pan: CALPHAD, Vol. 30,

No.4, Pages 470-481, 2006. “Experimental investigation and

thermodynamic description of the Co-Si system",

                        T max = 3380 K

 

Co-Sm                

 

Xuping Su, Weinjing Zhang, Guoquan Liu, Zhenmin Du:

J. Alloys Compounds 1998, 267, 149-153.

“A Thermodynamic Assessment of the Co-Sm system”.

                        T max = 1860 K

 

Co-Sn

 

L. Liu, C. Andersson, J. Liu: J. Electron. Materials, 33(9),

935-939 (2004).

                        T max = 1880 K

                                                         

Co-Ta                

 

Z.-Kui Liu, Y. A. Chang: CALPHAD, 1999, 23(3-4), 339-356.

“Thermodynamic Assessment of the Co-Ta system”.

 

Co-Ti

 

G. Cacciamani, R. Ferro, I. Ansara, N. Dupin:

Intermetallics, 2000, 8(3), 213-222.

"Thermodynamic modeling of the Co-Ti system".

                          

Co-V                

 

J. Bratberg, B. Sundman:  J. Phase Equil., 2003, 24(6), 495-503.

"A Thermodynamic assessment of the Co-V system".

 

Co-W                

 

Data for the Co-W system are taken from the assessment of

A. Fernandez Guillermet:  Report TRITA-MAC 371 (1988),

Metall. Trans. 1989, 20A, 935-956.

“Thermodynamic properties of the Co-W-C system”. 

Data for other phases were provided by

P. Gustafson:  Report TRITA-MAC 330 (1987),

Z. Metallkde, 1988, 79(6), 397-402.

“A thermodynamic evaluation of the C-Mo-W System”

B. Jansson:  IM report (1987).

 

Co-Y

 

W. Golumbfskie, Zi-Kui Liu:

Journal of Alloys and Compounds, 407 (2006) 193-200.

                        T max = 3320 K

                  

Co-Zn                

 

G.P. Vassilev, M. Jiang:

J. Phase Equil. and Diffusion 2004, 25, 259-268.

“Thermodynamic optimization of the Co-Zn system”.

                        T max = 2630 K

 

Co-Zr

 

N. Saunders, P. Miodownik: J. Mat. Research 1986, 1, ??,

Modified by at for use with SGTE unary data.

                            

Cr-Cu                

 

Zeng K., Hamalainen M.: CALPHAD, 1995, 19(1), 93-104.

“Thermodynamic analysis of stable and metastable equilibria in

the Cu-Cr system”.

 

Cr-Fe                

 

The data for the Cr-Fe system are from the assessment of

J. O. Andersson, B. Sundman:  Report TRITA 0270 (1986),

CALPHAD, 1987, 11, 83-92.

“Thermodynamic properties of the Cr-Fe system”.

The data were revised slightly by

B. J. Lee:  CALPHAD, 1993, 17, 251. “Revision of thermodynamic

descriptions of the Fe-Cr And Fe-Ni liquid phases”.

Data for the High Sigma phase are also from

B. J. Lee:  Metall. Trans. A, 1993, 24A, 1919-1933.

“A thermodynamic evaluation of the Cr-Mn and Fe-Cr-Mn systems”.

 

Cr-Ga

J. Groebner, R. Wenzel, G. G. Fischer and R. Schmid-Fetzer:

J. Phase Equil., 1999, 20(6), 615-625.

                        T max = 3280 K

 

Cr-Ge

Y. Q. Liu, Y. Du: CALPHAD, Vol. 34, Issue 1, 26-35, (2010).

"Thermodynamic description of the Cr-Ge system".       

                               

Cr-La                

 

E. Povoden, M. Chen, A.N. Grundy, T. Ivas, L.J. Gauckler:

J. Phase Equilib. Diffus., 30, 12-27 (2009).

                        T max = 5160 K

 

Cr-Mg                

 

Data for the Cr-Mg system are from an unpublished assessment of

 I. Ansara published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

 eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Cr-Mn                

 

B. J. Lee:  Metall. Trans. A 1993, 24A, 1919-1933.

“A thermodynamic evaluation of the Cr-Mn and Fe-Cr-Mn systems”.

 

Cr-Mo                

 

K. Frisk:  Report D 60, KTH, (1984).

 

Cr-N                

 

Frisk K.:  Report TRITA-MAC 393 (1989),

CALPHAD, 1991, 15(1), 79-106.

“A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems”, and C. Qiu, Metall. Trans. A 24A, (1993) 2393-2409.

                        T max = 2470 K

 

Cr-Nb                

 

Costa Neto J. G., Fries S. G., Lukas H. L., Gama S., Effenberg G.:

CALPHAD, 1993, 17(3), 219-228.

“Thermodynamic optimisation of the Nb-Cr system”.

 

Cr-Ni                

 

Data for the Cr-Ni system were from an unpublished assessment by

T. G. Chart, D. D. Gohil and A. T. Dinsdale, NPL,

Data for the HCP phase were derived by

I. Ansara, N. Dupin, J. M. Joubert, M. Latroche, and A. Percheron-Guegan:

J. Phase Equil., 1998, 19(1), 6-10.

"Thermodynamic study of  the Cr-Ni-Zr system". 

Cr2Ni data from P. E. A. Turchi, L. Kaufman, Z.-K. Liu, CALPHAD 30

 (2006) 70-87.  Other updates from P. Franke.

 

Cr-P                

 

J. Miettinen:  CALPHAD, 1999, 23(1), 141-154.

“Thermodynamic description of Cr-P and Fe-Cr-P systems

   at low phosphorus contents”. 

Note: The data for the M3P phase were modified by A T. Dinsdale (1999).

 

Cr-Pd                

 

G. Ghosh and G. B. Olson:  J. Phase Equilib, 2000, 21(1), 32-39.

 

Cr-Pt                 

 

P. J. Spencer, unpublished work (1998).

                        T max = 4600 K

 

Cr-Ru                

 

Data for the Cr-Ru system are from an unpublished assessment of

P. Y. Chevalier and E. Fischer (1998) supplied to SGTE in January 2005.

 

Cr-Si                

 

Y. Du, J. C. Schuster:  J. Phase Equilibria, 21 (2000) 281-286.

 

Cr-Sn                

 

R. Jerlerud Perez, B. Sundman:  CALPHAD, 25 (2001) 59-66.

 

Cr-Ta

 

N. Dupin, I. Ansara:  Z. Metallkde, 1996, 87(7), 555-561.

“Thermodynamic Assessment of the Cr-Ni-Ta System”.

                        T max =4820 K

 

Cr-Ti                

 

Data for the Cr-Ti system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

 eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

G. Ghosh: J. Phase Equilibria 23 (2002) 310-328.

 

Cr-V                

 

B. J. Lee:  Z. Metallkde., 1992, 83(5), 292-299.

“A thermodynamic evaluation of the Fe-Cr-V system”.

 

Cr-W                

 

P. Gustafson:  Report TRITA-MAC 320 (1986),

CALPHAD, 1988, 12(3), 277-292.

“A Thermodynamic evaluation of the Cr-Ni-W system”.

 

Cr-Y

Wren Chan, Michael C. Gao, Omer N. Dogan, Paul King,  and Anthony D. Rollett: Journal of Phase Equilibria and Diffusion, 30(6), 578-586, (2009).

"Thermodynamic assessment of Cr-rare earth systems".                                                

 

Cr-Zn                

 

Reumont, G., Perrot, P.: J. Phase Equilib., 2003, 24(1), 50-54.

“Thermodynamic assessment of the Zinc-rich part of the Cr-Zn system”.

 

Cr-Zr                

 

Data for the Cr-Zr system are the assessment of

Zeng K., Hamalainen M., Luoma R.:  Z. Metallkde., 1993, 84(1), 23-28.

“A thermodynamic assessment of the Cr-Zr system”.

Data for the fcc phase were from

Ansara I., Dupin N., Joubert J. M., Latroche M., Percheron-Guegan A.:

 J. Phase Equilib., 1998, 19(1), 6-10.

“Thermodynamic study of the Cr-Ni-Zr system”.

 

Cs-K                

 

Data for the Cs-K system are from an unpublished assessment of

M. H. Rand (AERE Harwell, report).

                        T min = 200 K

 

Cs-Na                

 

Data for the Cs-Na system are from an unpublished assessment of

M. H. Rand (AERE Harwell, report).

                        T min = 200 K

 

Cs-Rb                

 

Data for the Cs-Rb system are from an unpublished assessment of

M. H. Rand (AERE Harwell, report).

 

Cu-Er

 

L.G. Zhang, L.B. Liu, G.X. Huang, H.Y. Qi, B.R. Jia, Z.P. Jin:

“Thermodynamic assessment of the Al-Cu-Er system”,

CALPHAD, Vol. 32, Issue 3, 527-534, (2008)

 

Cu-Eu

L. G. Zhang, L. B. Liu, H. S. Liu, Z. P. Jin: CALPHAD, 2007, 31, 264-268,        "Thermodynamic assessment of Cu-Eu and Cu-Yb system".

 Published parameters do not quite agree with published diagrams.

A small change made to liquid data.

 

Cu-Fe                

 

Data for the Cu-Fe system are from the assessment of

I Ansara and A Jansson published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

 eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

The data were also reported by A Janson in the KTH report

TRITA-MAC-533, 1993.

 

Cu-Ge                

 

Data for the Cu-Ge system are from an unpublished assessment of

 M. H. Rand, AERE Harwell, report.

 

Cu-H

 

W. Huang, S.M. Opalka, D. Wang, T. B. Flanagan:

CALPHAD, 31, 315-29 (2007).

 “Thermodynamic modelling of the Cu-Pd-H system”.

 

Cu-Hf                

 

Dong Liang and Yajun Liu: Journal of Alloys and Compounds,

426 (2006) 101-105. Reevaluation of the Cu-Hf  binary system.

 

Cu-Ho                

 

C. P. Wang, S. H. Guo, X. J. Liu, A. Tang, F. S. Pan:

J. Alloys Compd.,  487, 173-78 (2009).

 

Cu-In                

 

From SOLDERS database - based on X. J. Liu, H. S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, J. Yamaguchi:

J. Electron. Mater., 2001, 30(9),1093, replaces

C. R. Kao, A. Bolcavage, S.-L. Chen, S. W. Chen, Y. A. Chang, A. D. Romig Jr.:  J. Ph. Equil., 1993, 14(1), 22-30.

“Phase equilibria of the Cu-In system. II- Thermodynamic assessment and calculation of phase diagram".

Data for ETAP, DELTA and THETA amended to smooth Cps –

Michael  Schick, GTT 22/8/2016.

 

Cu-Ir     

 

Data for the Cu-Ir system are from an unpublished assessment of

 J. Korb (2004), supplied by GTT to SGTE in 2005.

 

Cu-La

 

Zhenmin Du, Yunhua Xu, Weijing Zhang:

 J. Alloys and Compounds, 1999, 289, 88-95.

 

Cu-Li                 

 

Data for the Cu-Li system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

 eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Cu-Mg                

 

Liang P., Seifert H. J., Lukas H. L., Ghosh G., Effenberg G., Aldinger F.: CALPHAD, 1998, 22(4), 527-543.

“Thermodynamic modeling of the Cu-Mg-Zn ternary system”.

 

Cu-Mn                

 

J. Vrestal, J. Stepankova, P. Broz:

Scand. J. Metall., 1996, 25, 224-231.

“Thermodynamics of the copper-manganese system”).

Note: The data were modified by A. T. Dinsdale (2000) to avoid

bcc phase being stable in regions where it should not be stable.

 

Cu-Mo

 

Cui Ping Wang, Xing Jun Liu, I. Ohnuma, R. Kainuma, Shi Ming Hao and K. Ishida:  J. Phase Equil., 2000, 21(1), 54-62.                                      

 

Cu-Nb                

 

Hamalainen M., Jaaskelainen K., Luoma R., Nuotio M., Taskinen P.,

and Teppo O.: CALPHAD, 1990, 14(2), 125-137.

“A Thermodynamic analysis of the binary alloy systems Cu-Cr,

  Cu-Nb and Cu-V”.

 

Cu-Nd                

 

Zhuang W., Qiao Z. Y., Wei S., Shen J.:

J. Phase Equil, 1996, 17(6), 508-521.

“Thermodynamic evaluation of the Cu-R (R, Ce, Pr, Nd, Sm)

binary systems”.

Note: Both fcc and bcc phases have missing interactions but may be

 treated as ideal for calculations in the binary system. Care should be

taken when extrapolating to multicomponent systems.

 

Cu-Ni                

 

S an Mey:  CALPHAD, 1992, 16(3), 255-260.

“Thermodynamic Re-evaluation of the Cu-Ni system”.

 

Cu-P                

 

Data for the Cu-P system are from an unpublished assessment by Chandrasekan et. al.  (1987).

                        T max = 4630 K

Cu-Pb                

 

F. H. Hayes, H. L. Lukas, G. Effenberg, and G. Petzow:

Z. Metallkde., 1986, 77, 749-754).

Note: The interactions in the bcc and hcp phases were assumed to be

the same as fcc phase. Parameter for HCP_ZN added from SOLDERS.

 

Cu-Pd                

 

W. Huang, S. M. Opalka, D. Wang, T. B. Flanagan:

CALPHAD, 31, 315-29 (2007).

                        T max = 5350 K

 

Cu-Pr                

 

Zhuang W., Qiao Z. Y., Wei S., Shen J.:

J. Phase Equil., 1996, 17(6), 508-521.

“Thermodynamic evaluation of the Cu-R (R, Ce, Pr, Nd, Sm) binary systems”.

 Note: Both fcc and bcc phases have missing interactions but may be treated

 as ideal for calculations in the binary system. Care should be taken when extrapolating to multicomponent systems.

 

Cu-Rh

 

S. Priya and K. T. Jacob:  J. Phase Equilib., 2000, 21(4), 342-349.

 

Cu-Sb                

 

R. Nitsche, S. an Mey, K. Hack, P. J. Spencer:

Z. Metallkde, 1991, 82, 67-72.

“A thermodynamic evaluation of the copper-antimony system”.

Note: The original assessment was not carried out with SGTE unary data, however the difference from using these unary data is small.

The assessment is OK for the moment with Cu9Sb2 commented out.

The Cu7Sb2 data were modified by K. Hack to prevent the phase from becoming stable again at high temperatures.

 

Cu-Sc                

 

GTT, unpublished, 2008.

                        T max = 4580 K

 

Cu-Si                

 

Data for the Cu-Si system are from an unpublished assessment of 

S. Fries, T. Jansson, I. Hurtado and L. Lukas. This represents a revision of the dataset published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Cu-Sm                

 

Zhuang W., Qiao, Y., Wei S., Shen J.:

J. Phase Equil., 1996, 17(6), 508-521.

“Thermodynamic evaluation of the Cu-R (R, Ce, Pr, Nd, Sm) binary systems”. Note:  The bcc phase has missing interactions but may be treated as ideal for calculations in the binary system. Care should be taken when extrapolating to multicomponent systems.

 

Cu-Sn                

 

From SOLDERS: Based on data from

J. H. Shim, C. S. Oh, B. J. Lee and D. N. Lee:

Z. Metallkde, 1996, 87(3), 205-212  as previously.

“Thermodynamic assessment of the Cu-Sn system”.

Data for the fcc_a1  revised by B. J. Lee  extended by X. J. Liu, H. S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, J. Yamaguchi:

J. Electron. Mater., 2001, 30(9), 1093-1103.

"Experimental Determination and Thermodynamic Calculation of the Phase Equilibria in the Cu-In-Sn System".

Note: Liquid data modified by Ales Kroupa, May 2005, to take into account latest experimental enthalpy data. Updated unary data to cure Neumann-Kopp anomalies by Michael Schick, GTT.

 

Cu-Sr                

 

Risold D., Hallstedt B., Gauckler L. J., Lukas H. L., Fries S. G.:

CALPHAD, 1996, 20(2), 151-160.

“Thermodynamic Optimization of the Ca-Cu and Sr-Cu systems”.

                        T max = 3250 K

Cu-Ti                

 

Kumar H. C, Ansara I., Wollants P., Delaey L.:

Z. Metallkde, 1996, 87(8) 666-672.

“Thermodynamic optimisation of the Cu-Ti system”.

 

Cu-Tl                 

 

(P.-Y. Chevalier:  Thermochimica Acta, 1989, 156, 383-392.

“A Thermodynamic evaluation of the Copper-Thallium system”.

 

Cu-V                

 

Hamalainen M., Jaaskelainen K., Luoma R., Nuotio M., Taskinen P.,

and Teppo O.:  CALPHAD, 1990, 14(2), 125-137.

“A Thermodynamic analysis of the binary alloy systems Cu-Cr,

Cu-Nb and Cu-V”.

 

Cu-W

 

B. Hallstedt, D. Lange, D. Music, unpublished work, 2012

                        T max = 9000 K

 

Cu-Y                

 

Fries S. G., Lukas H. L., Konetzki R., Schmid-Fetzer R.:

J. Phase Equil., 1994, 15(6), 606-614.

“Experimental investigation and thermodynamic optimization of the Y-Cu binary system”.

Note: The data for the CuY phase have been modified slightly to correct the calculated invariant temperatures.

 

Cu-Zn                 

 

Kowalski M., Spencer P. J.:

J. Phase Equil., 1993, 14(4), 432-438.

“Thermodynamic reevaluation of the Cu-Zn system”.

Some v. minor differences in gamma_brass data wrt SOLDERS.

 

Cu-Zr                

 

Zeng K. J., Hamalainen M., Lukas H. L.:

 J. Phase Equil., 1994, 15(6), 577-586.

“A new thermodynamic description of the Cu-Zr system”.

 

Dy-Er

 

Susanne Norgren:  J. Phase Equil., 2000, 21(2), 148-156.

                  

Dy-Fe                

 

S. Landin, J. Agren:  J. Alloys and Compounds, 1994, 207/208, 449-453.

“Thermodynamic assessment of Fe-Tb and Fe-Dy phase diagrams and prediction of Fe-Tb-Dy phase diagram”.

 

Dy-Ho

 

Susanne Norgren:  J. Phase Equilib, 2000, 21(2), 148-156.

                

Dy-Mg

 

G. Cacciamani, S. de Negri, A. Saccone, R. Ferro:

Intermetallics, 11 (2003) 1135-1151.                                                    

 

Dy-Ni                

 

M. Li, W. Han: CALPHAD, 33, 517-20(2009). 

Existence of DYNI4 and DY4NI17 uncertain.

Old lattice stabilities for Dy were used. Changing to current

lattice  stabilities increases invariant temperatures by up to 20 K

in the Dy-rich part of the system. In the Ni-rich part of the system

invariant temperatures are almost unchanged.

Compound unaries amended to smooth Cps – Michael Schick, GTT,

8/9/2016

                        T max = 5940 K

Dy-Tb                

 

S. Landin, J. Agren:  J. Alloys and Compounds, 1994, 207/208, 449-453. “Thermodynamic assessment of Fe-Tb and Fe-Dy phase diagrams and prediction of Fe-Tb-Dy phase diagram”.

 

Er-Ho

 

Susanne Norgren: J. Phase Equilib., 2000, 21(2), 148-156.

 

Er-Ni

 

Zhenmin Du, Donghui Wang, Weijing Zhang:

J. Alloys Compounds, 1999, 284, 206-212.

Compound unaries amended to smooth Cps – Michael Schick, GTT,

8/9/2016

                        T max = 2730 K

 

Er-Tb

 

Susanne Norgren: J. Phase Equilib., 2000, 21(2), 148-156.

 

Eu-In

 

F. Gao, S. L. Wang, C. P. Wang, X. J. Liu:  CALPHAD, 35, 1-5 (2011).         "Thermodynamic assessments of the In-Eu and In-Yb systems".

                        T max = 4960 K

 

Eu-Mg                

 

X. M. Tao, H. Wang, H. S. Liu, Y. F. Ouyang, Z. P. Jin:

CALPHAD, 32, 462-65(2008).

Eu-Pd                

 

Z. Du, Y. He:  J. AllComp, 327 (2001) 127-131.

                        T max = 3550 K

 

Eu-Sn

 

L. Liu, C. Li, F. Wang, Z. Du, W. Zhang:

Journal of Alloys and Compounds, 379 (2004) 148-153.

Note: Stoichiometric phases adjusted to smooth Cps. Liquid re-optimised

To refit to phase diagram – Michael Schick – GTT 9/9/2016                                        

 

Fe-Gd                

 

Zhang W., Li C, Su X., Han K.:

J. Phase Equil., 1998, 19(1), 56-63.

“An updated evaluation of the Fe-Gd (Iron-Gadolinium) system”.

                        T max = 5160 K

 

Fe-La                

 

E. Povoden-Karadeniz, A. N. Grundy, M. Chen, T. Ivas, L. J. Gauckler:

J. Phase Equilib. Diffus., 30, 351-66 (2009).

There is an inverse miscibility gap with a minimum at 5180 K

 and x(La)=0.37.

                        T max = 5180 K

 

Fe-Mg                

 

Data for the Fe-Mg system are from an unpublished assessment of

J. Tibbals published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 Note:  The compounds Cu87Si13-kappa and Cu85Si15-beta were replaced respectively by hcp-A3 and bcc_A2. (July 1997).

 

Fe-Mn                

 

WM  Huang:  Report TRITA-MAC 388 (rev 1989),

CALPHAD, 1989, 13, 243-252.

“An assessment of the Fe-Mn system”.

 

Fe-Mo                

 

The data for the Fe-Mo system are taken from an assessment by

A. Fernandez Guillermet:  CALPHAD 1982, 6, 127-140.

“An assessment of the Fe-Mo system”.

The data for the sigma phase were revised by

A. Fernandez Guillermet: Report TRITA-MAC 200 (1986).

The data for other phases were derived by

J.-O. Andersson, Lange N.:  Report TRITA 0322 (1986),

Met Trans A, 1988, 19(6), 1385-1394.

“An experimental study and a thermodynamic evaluation of the Fe-Cr-Mo system”.

 J.-O. Andersson:  Report TRITA 0321 (1986),

CALPHAD, 1988, 12(1), 9-23.

“A thermodynamic evaluation of the Fe-Mo-C system“.

Frisk K.:  Report TRITA-MAC 428 (1990),

Met. Trans. A, 1992, 23(2), 639-649.

“An experimental and theoretical study of the phase equilibria in

the Fe-Mo-Ni system”).  

Note: LAVES_C14 taken from P. Franke.

 

Fe-N                

 

The data for the Fe-N systems are from the assessment of

Frisk K.:  CALPHAD, 1991, 15(1), 79-106.

“A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and

Cr-Mo-N systems”.

Data for cbcc_a12 and cub_a13 are taken from the assessment of

Caian Qiu:  Report TRITA-MAC-0493,

Metall. Trans. A, 1993, 24(3), 629-645.

“A thermodynamic evaluation of the Fe-Mn-N system”.

Valid down to 350 K.

                        T min = 350 K

 

Fe-Nb                

 

Data for the Fe-Nb system are from the assessment of

WM  Huang:  Report TRITA-MAC 390 (1989),

Z. Metallkde., 1990, 81, 397-404.

“An assessment of the C-Fe-Nb system”.

 

Fe-Nd                

 

Data for the Fe-Nd system are from the assessment of

B. Hallemans, P. Wollants and J. R. Roos:

J. Phase Equilib., 1995, 16(2), 137-149.

“Thermodynamic assessment of the Fe-Nb-B phase diagram”.

 Note:  The invariant reaction for the fcc phase are calculated

 to be different from those published.

 

Fe-Ni                

 

Data for the Fe-Ni system were from an unpublished assessment by

T. G. Chart , D. D. Gohil and A. T. Dinsdale (1986).

The data for the liquid phase were modified by

B. J. Lee:  CALPHAD, 1993, 17(3), 251.

“Revision of thermodynamic descriptions of the Fe-Cr

  and Fe-Ni liquid phases”.

 

Fe-P                

 

Data for the Fe-P system are from an unpublished assessment by

P. Gustafson (1990).

                        T max = 3750 K

 

Fe-Pb                

 

Data for the Fe-Pb system are from an unpublished assessment of  

AT Dinsdale and Gohil (1987).

                        T max = 7000 K

 

Fe-Pd

 

G. Ghosh, C. Kantner and G. B. Olson:

J. Phase Equilib., 1999, 20(3), 295-308.

 

Fe-Pr

 

Y. Du, Z. Jin, F. Han:

J. Chin. Rare Earth Soc.; 1990, 3, 216-220.

                        T max = 1850 K

 

Fe-Ru                

 

Data for the Fe-Ru system are taken from an unpublished assessment of

P. Y. Chevalier and E. Fischer (2004) supplied to SGTE in January 2005.

 

Fe-Sb                

 

Benyan Pei, Bjorkman B., Sundman B., Jansson B.:

CALPHAD, 1995, 19(1), 1-15.

“A thermodynamic assessment of the Iron-Antimony system”.

                        T min = 310 K

                        T max = 5050 K

 

Fe-Sc                

 

Data for the Fe-Sc system are from an unpublished assessment of  GTT.

 

Fe-Si                

 

Data for the Fe-Si system are based on the assessment of

J. Lacaze, B. Sundman:  Metall. Trans. A, 1991, 22A, 2211.

 “An assessment of the Fe-C-Si system” but modified by

J. Miettinen:  CALPHAD 1998, 22(2), 231-256.

“Reassessed thermodynamic solution phase data for ternary

Fe-Si-C system”. Stoichiometric phases adjusted to smooth Cps

– Michael Schick,  GTT 9/9/2016                                        

 

Fe-Sm                

 

M. Zinkevich, N. Mattern, A. Handstein and O. Gutfleisch:

Journal of Alloys and Compounds, Vol. 339, Issues 1-2, 118-139, (2002).

Thermodynamics of Fe-H, and H-Sm systems and its application to the hydrogen-disproportionation-desorption-recombination (HDDR)

process for the system Fe17Sm2-H2.

                        T max = 2860 K

 

Fe-Sn                

 

H. C.  Kumar, P. Wollants, L. Delaey:

 CALPHAD, 1996, 20(2), 139-149.

 “Thermodynamic evaluation of Fe-Sn phase diagram”).

 

Fe-Sr

 

Y. Peng, D. Zhao, B. Hu, L. Zhou, Y. Du, T. Gang, S. Liu, K. Cheng:

JPED, 32(1) 42-47 (2011).

"Thermodynamic modelling of the Sr-M (M=Fe, Mn, Ni, Ti, V) systems".

                        T max = 10000 K

 

Fe-Ta

 

G. C. Coelho, S. G. Fries, H. L. Lukas, P. Majewski, J. M. Zelaya Bejarano,        S. Gama, C. A. Ribeiro, G. Effenberg:

Proc. Klaus Schulze Symposium on Processing and Applications of high purity refractory metals and alloys, ed

P. Kumar, H. A. Jehn, M. Uz:

The Minerals, Metals and Materials Society, 1994.

"Thermodynamic optimisation of the Nb-Fe and Ta-Fe binary systems"        Alternative description .

 

Fe-Tb                

 

S. Landin, J. Agren:

J. Alloys and Compounds, 1994, 207/208, 449-453.

“Thermodynamic assessment of Fe-Tb And Fe-Dy phase diagrams

   and prediction of Fe-Tb-Dy phase diagram”.

                        T max = 3630 K

 

Fe-Ti                

 

L. F. S. Dumitrescu, M. Hillert, N. Saunders:

J. Phase Equilibria, 19 (1998) 441-448,

B. J. Lee: Metall. Trans. A, 32(2001) 2423, C-Fe-N-Nb-Ti

stoichiometric FeTi merged into BCC_B2 phase with order/disorder description, parameters for disordered BCC adjusted by Peter Franke.

 

Fe-U                

 

Kurata M., Ogata T., Nakamura K., Ogawa T.:

J. Alloys Compd., 1998, 271-273, 636-640.

“Thermodynamic assessment of the Fe-U, U-Zr and Fe-U-Zr systems”.

                        T max = 4250 K

 

Fe-V                

 

W. Huang: Report TRITA-MAC 432 (Rev 1989,1990),

Z. Metallkde, 1991, 82(5), 391-401.

“A thermodynamic evaluation of the Fe-V-C system”,

W. Huang: Met. Trans. A, 1991, 22(9), 1911-1920.

“Thermodynamic properties of the Fe-Mn-V-C system”.

 

Fe-W                

 

The data for the Fe-W system are from the assessment of

J-O Andersson and P Gustafson:  CALPHAD, 1983, 7(4), 317-326.

“A thermodynamic evaluation of the Iron-Tungsten system”.

Further data for the system relate to ternary assessments of

P Gustafson:  Met. Trans. A 1987, 18, 175-188,

P Gustafson:  Z. Metallkde, 1988, 79(6), 388-396.

“An experimental study and A thermodynamic evaluation of

the Fe-Mo-W system”.

A Fernandez Guillermet, L Ostlund: Report TRITA-MAC 258 (1985),

Met. Trans. A, 1986, 17, 1809-23.

                        T min = 400 K

 

Fe-Y

 

Du Zhenmin, Zhang Weijing and Zhuang Yuzhi:

Rare metals, 1997, 16(1), 52-58.

Stoichiometric phases adjusted to smooth Cps

– Michael Schick,  GTT - 9/9/2016                                        

                        T max = 2310 K

 

Fe-Zn                

 

Wei Xiong, Yi Kong, Yong Du, Zi-Kui Liu, Malin Selleby, Wei-Hua Sun:

CALPHAD, 33(2) (2009) 433-440

 “Thermodynamic investigation of the galvanizing systems”,

I: Refinemment of the thermodynamic description for the Fe-Zn system.

 

Fe-Zr                

 

Data for the Fe-Zr system are from the assessment of

C. Servant, C. Gueneau, I. Ansara:  

J. Alloys Comp., 220 (1995) 19-26.

“Experimental and Thermodynamic assessment of the Fe-Zr system”.

Data for the DELTA, ORTHO_A20 and TETRAGONAL_U are taken from the work of

Kurata M., Ogata T., Nakamura K., Ogawa T.:

J. Alloys Compd., 1998, 271-273, 636-640.

“Thermodynamic assessment of the Fe-U, U-Zr and Fe-U-Zr systems”.

 

Ga-Ge                

 

I  Ansara, J P Bros, M Gambino:  CAPHAD, 1979, 3, 225-233.

“Thermodynamic analysis of the germanium-based ternary systems

(Al-Ga-Ge, Al-Ge-Sn, Ga-Ge-Sn”.

                        T max = 3260 K

 

Ga-Hg                

 

Data for the Ga-Hg system are from an unpublished assessment of

I. Ansara, (1991).

                        T max = 3260 K

 

Ga-In                

 

B. C. Rugg, T. G. Chart:  CALPHAD, 1990, 14(2), 115-123.

“A critical assessment of thermodynamic and phase diagram data

for the Gallium-Indium system”.

                        T max = 3260 K

 

Ga-Mg

 

Peter Franke: A refit of data from Notin et al., 1991 using SGTE

unaries data,       

M. Notin, E. Belbacha, J. Charles, J. Hertz:

J. Alloys Comp., 1991, 176, 25-38.       

                        T max = 3260 K

 

Ga-N

 

J. Unland, B. Onderka, A. Davydov, R. Schmid-Fetzer:

J. of Crystal Growth, 256, 33-51 (2003).                                             

                        T max = 3260 K

 

Ga-Ni

 

Wenxia Yuan, Zhiyu Qiao, Herbert Ipser, Gunnar Eriksson:

J. Phase Equilib., 2004, 25(1), 68-74,

Thermodynamic assessment of the Ni-Ga system

GANI_B2 data modified by atd 4/11/2010.                                

Please restore L12. Note: Calculation below 350 K is not reliable

                        T max = 3260 K

 

Ga-P                

 

The data for the Ga-P system were assessed by

I. Ansara and C. Chatillon, but reported in the paper by

I. Ansara, C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida,

M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart, T. Anderson:  CALPHAD, 1994, 18(4), 177-222.

A binary database for III-V compound semiconductor systems”.

                        T max = 3260 K

 

Ga-Pb                

 

I. Ansara, F. Ajersch:  J. Phase Equil., 1991, 12(1), 73-77.

“The Ga-Pb (Gallium-Lead) system”.

                        T max = 3260 K

 

Ga-Pt 

 

Mei Li, Changrong Li, Fuming Wang, Weijing Zhang:

Intermetallics, 2006, 14, 826-831.

                        T max = 3260 K

 

Ga-Sb                

 

The data for the Ga-Sb system were from an unpublished assessed of

T. Andersson, but reported in the paper by

I. Ansara, C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida,

M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart, T. Anderson:  CALPHAD, 1994, 18(4), 177-222.

A binary database for III-V compound semiconductor systems”.

                        T max = 3260 K

 

Ga-Si

 

Peter Franke, unpublished, 2004.                                        

                        T max = 3260 K

 

Ga-Sn                

 

T. J. Anderson, I. Ansara: J. Phase Equilibria, 1992,  13(2), 181-189.

“The Ga-Sn (Gallium-Tin) system”.

                        T max = 3260 K

 

Ga-Ti

 

Jing-Bo Li, J.-C. Tedenac, M.-C., Record:

J. Alloys Compounds, 2003, 358, 133-41.

"Thermodynamic analysis of the Ga-Ti system".

                        T max = 3260 K

 

Ga-Zn                

 

Dutkiewicz, J., Moser, Z., Zabdyr, L., Gohil ,D. D., Chart, T. G., Ansara I., Girard, C.:  Bull. Alloy Phase Diagrams, 1990, 11(1), 77-82.

“The Ga-Zn (Gallium-Zinc) system”.

                        T max = 3260 K

 

Gd-Ge                

 

Hai-Lin Chen, Yong Du, Cui-Yun He:

Journal of Alloys and Compounds, Vol. 462, Issues 1-2, 181-186, (2008). “Thermodynamic modeling of the gadolinium-germanium system”.

 

Gd-Li                

 

D. G. Kevorkov, J. Groebner, R. Schmid-Fetzer, V. V. Pavlyuk, G. S. Dmytriv, O. I. Bodak:  J. Phase Equilibria, 22 (2001) 34-42 

[01Kev] use old Gd element data from 91Din but the SGTE recommendation for Gd has been changed in 1996.

This dataset uses recent unaries and the L-parameters in LIQUID were slightly adjusted by Peter Franke Mar. 2005.

 

Gd-Mg                

 

Data for the Gd-Mg system are taken from the assessment of

Cacciamani G., Saccone A., Borzone G., Delfino S., Ferro R.:

Thermochimica Acta, 1992, 199, 17-24.  “Computer coupling of thermodynamics and phase diagrams: the  Gadolinium-Magnesium

system as an example”.

Note: The data for the bcc phase and the intermetallic compounds

GdMg and GdMg2 were modified by A. T. Dinsdale (Sept 2006) to compensate for a change in the data for pure Gd.

                        T max = 2290 K

 

Gd-Mn                

 

J. Groebner, A. Pisch, R. Schmid-Fetzer:

J. AllComp, 317-318 (2001) 433-437,

01Gro use another lattice stability for fcc-Gd,

all invariants are more or less off, check Gd-data -> old 91Din? 

PF Mar. 2005.

 

Gd-Mo

 

M. Zinkevich, N. Mattern, H. J. Seiffert:

J. Phase Equilib., 2001, 22(1), 43-50.

"Thermodynamic assessment of Gd-Zr and Gd-Mo systems".

 

Gd-Ni

 

Su Xuping, Zhang Weijing and Du Zhenmin:

Rare Metals, 1996, 15(4), 275-281.

The data give qualitatively the right phase diagram.

Quantitatively there are differences which are difficult to resolve.                                                                

                        T min = 310 K

                        T max = 4940 K

 

Gd-Sc

 

Susanne Norgren: Thesis, KTH, 2000.                                     

 

Gd-Si                

 

Mianliang Huang, Deborah L. Schlagel, Frederick A. Schmidt,

Thomas A. Lograsso:  Journal of Alloys and Compounds, Vol. 441,

Issues 1-2, Pages 94-100, (2007).

“Experimental investigation and thermodynamic modeling of

the Gd-Si system“.

                        T max = 4700 K

 

Gd-Zr

 

M. Zinkevich, N. Mattern, H. J. Seiffert:

J. Phase Equilib., 2001, 22(1), 43-50.

"Thermodynamic assessment of Gd-Zr and Gd-Mo systems".

 

Ge-In                

 

P. Y. Chevalier:  1989, 155, 227-240.

“A thermodynamic evaluation of the Ge-In,  Ge-Pb, Ge-Sb,

Ge-Tl and Ge- Zn systems”.

 

Ge-Mg                

 

F. Islam, A. K. Thykadavil, M. Medraj:

Journal of Alloys and Compounds, Vol. 425, Issues 1-2, 129-139, (2006).

“A computational thermodynamic model of the Mg-Al-Ge system”.

                        T max = 2840 K

 

Ge-Pb                

 

P. Y. Chevalier:  1989, 155, 227-240.

“A thermodynamic evaluation of the Ge-In,  Ge-Pb, Ge-Sb,

Ge-Tl and Ge- Zn systems”.

 

Ge-Ru

 

Z. H. Long, H. S. Liu, Z. P. Jin:

Journal of Alloys and Compounds, 479 (2009) 262-267.

"Thermodynamic description of Ru-Ge-Si ternary system".                                                           

 

Ge-Sb                

 

P. Y. Chevalier:  1989, 155, 227-240.

“A thermodynamic evaluation of the Ge-In,  Ge-Pb, Ge-Sb,

Ge-Tl and Ge- Zn systems”.

 

Ge-Si                

 

Z. H. Long, H.S. Liu, Z.P. Jin: J. Alloys Compounds, 479 (2009) 262-267.

“Thermodynamic description of Ru-Ge-Si ternary system”.

 

Ge-Sn                

 

Y. Feutelais, B. Legendre, S. G. Fries:

CALPHAD, 1996, 20(1), 109-123.

“Thermodynamic evaluation of the system Germanium-Tin”.

Ge-Sr

 

Y. Du, L. Li, J. Wang, J. Wang, Z. Jin:

CALPHAD, 33, 719-22(2009).

"A thermodynamic description of the Ge-Sr system acquired by a

hybrid approach of CALPHAD and first-principles calculations".         

 

Ge-Te

 

A. Schlieper, Y. Feutelais. S. G. Fries, B. Legendre, R. Blachnik:

 CALPHAD, 23, 1-18 (1999).

"A Thermodynamic Evaluation of the Germanium-Tellurium System".

                        T max = 2270 K                                              

Ge-Tl                

 

P. Y. Chevalier: 1989, 155, 227-240.

“A thermodynamic evaluation of the Ge-In,  Ge-Pb, Ge-Sb,

Ge-Tl and Ge- Zn systems”.

 

Ge-V                

 

C. P. Wang, A. Q. Zheng, X. J. Liu:

Intermetallics, Vol.16, Issue 4, Pages 544-549, 2008.

“Thermodynamic assessments of the V- Ge and V- Pt systems”.

                        T max = 5320 K

 

Ge-Zn                

 

P. Y. Chevalier: 1989, 155, 227-240.

“A thermodynamic evaluation of the Ge-In,  Ge-Pb, Ge-Sb,

Ge-Tl and Ge- Zn systems”.

 

H-Li                

 

N. Wang, W. Sun, C. Sha, B. Hu, Y. Du, L. Sun, H. Xu, H. Wang, S. Liu:

JPED, 33(2), 89-96 (2012).

"Thermodynamic Modelling of the Li-H and Ca-H Systems".        

 

H-Pd                

 

W. Huang, S.M. Opalka, D. Wang, T.B. Flanagan:

CALPHAD, 31, 315-29(2007).

Thermodynamic modelling of the Cu-Pd-H system.

 

 

 

 

Hf-Mo                

 

G. Shao:  Intermetallics, 2002, 10, 429-434.

“Thermodynamic assessment of the Hf-Mo and Hf-W systems”.

                        T max = 4960 K

 

Hf-Nb

 

A. Fernandez Guillermet:  J. Alloys and Compounds, 1996, 234, 111-8.

 

Hf-Ni                

 

T. Wang, Z. Jin, Ji-C Zhao:  Z. Metallkd., 2001, 92, 441-446.

“Experimental study and reassessment of the Ni-Hf binary system”.

 

Hf-Si

 

J.-C. Zhao, B. P. Bewlay, M. R. Jackson and Q. Chen:

J. Phase Equil., 2000, 21(1) 40-45.

                                       

Hf-Ta                

 

A. Fernandez Guillermet:  Z. Metallkde, 1996, 86(6), 382-387.

“Gibbs energy modelling of the phase diagram and thermochemical properties in the Hf-Ta system”.

 

Hf-Ti                

 

H. Bitterman, P. Rogl:  J. Phase Equil., 1997, 18(1), 24-47.

“Critical assessment and thermodynamic calculation of the

ternary system Boron-Hafnium-Titanium [B-Hf-Ti]”).

 

Hf-W

 

G. Shao:  Intermetallics, 2002, 10, 429-434.

"Thermodynamic assessment of the Hf-Mo and Hf-W systems".

 

Hf-Zr

 

J. P. Abriata, J. C. Bolcich, H. A. Peretti:

Bull. Alloy Phase Diagrams, 1982, 3, (1), 29-34.

"The Hf-Zr (Hafnium-Zirconium) System".

Data from:

L. Lin, L. Delaey, O. van der Biest, P. Wollants:

Scripta Mat., 34, (9), 1411-1416 (1996).

"Calculation of isothermal sections of three ternary Ti-Zr-X systems".

 

Hg-Pb

 

A. Maitre, J. M. Fiorani, M. Vilasi:

J. Phase Equilib., 2002, 23(4), 329.

Data for L10 amended to smooth Cp,

Michael Schick – GTT 19/9/2016

                        T max = 4070 K

 

Hg-Sn

 

Yee-Wen Yen, Joachim Groebner, Steve C. Hansen,

Rainer Schmid-Fetzer: JPE, 2003, 24(2), 151.

HgSn12 gamma modelled with a range of homogeneity.                      

 

Hg-Zn

 

 S. C. Hansen: CALPHAD, 1998, 22, 359-373.

                                                      

Ho-Mg                

 

G. Cacciamani, S. de Negri, A. Saccone, R. Ferro:

Intermetallics, 11 (2003) 1135-1151.

 

Ho-Mn

 

C. P. Wang, H. L. Zhang, S. L. Wang, Z. Lin, X. J. Liu, A. T. Tang,

F. S. Pan:  J. Alloys Compd., 481, 291-95(2009).

"Thermodynamic Assessments of the Mn-Sm and Mn-Ho Systems".                                   

                        T min 500 K

 

Ho-Mo

 

C. P. Wang, S. H. Guo, X. J. Liu, A. T. Tang,

F. S. Pan:  J. Alloys Compd., 487, 173-78(2009).

"Thermodynamic Assessments of the Ho-X (X, Cu, Mo, V) systems".                        

 

Ho-Tb

 

 Susanne Norgren, JPE, 2000, 21(2), 148-156.

 

 Ho-V

 

C. P. Wang, S. H. Guo, X. J. Liu, A. T. Tang, F. S. Pan:

J. Alloys Compd., 487, 173-78(2009).

"Thermodynamic Assessments of the Ho-X (X, Cu, Mo, V) systems".

 

In-La                

 

Y. Wei, X. Su, F. Yin, Z. Li, X. Wu, C. Chen:

 J. AllComp, 333 (2002) 118-121.

Compound data amended to smooth Cps – Michael Schick (GTT) 19/9/2016

                        T max = 2400 K

 

In-Ni                

 

From SOLDERS:  P. Waldner, H. Ipser:

Z. Metallkde., 2002, 93(8), 825-832.

Some modificiations by Andy Watson and Alan Dinsdale, July/August 2004.

                        T max = 2550 K

 

In-P             

 

The data for the In-P system were from an unpublished assessed of

I. Ansara and C. Chatillon, but reported in the paper by

I. Ansara, C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani,

K. Ishida, M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart,

T. Anderson:  CALPHAD, 1994, 18(4), 177-222.

A binary database for III-V compound semiconductor systems”.

                        T max = 5510 K

 

In-Pb                

 

Data for the In-Pb system were assessed by

A. Bolcavage, reported by D. Boa, I. Ansara:

Thermochimica Acta, 1998, 314, 79-86.

“Thermodynamic assessment of the ternary system Bi-In-Pb”.

Note: Data for the rhombohedral_a7 phase were added by

A. T. Dinsdale (Oct 2006).

 

In-Pd                

 

From SOLDERS: Liu,Jiang, Ch. Jiang, Z.-K. Liu:

Metall. Mater. Trans. 33A, 3597 (2002).

BCC_B2 renamed B2_BCC.

                        T max = 3130 K

 

In-Sb                

 

Update of zincblende and missing data from SOLDERS. Remainder are

from an unpublished assessment of

T. J. Anderson, but reported in the paper by

I. Ansara, C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida,

M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart,

and T. Anderson: CALPHAD, 1994, 18(4), 177-222.

"A binary database for III-V compound semiconductor systems".

 

In-Si                

 

R. W. Olesinski, N. Kanani, G. J. Abbaschian:

Bulletin of Alloy Phase Diagrams, 1985, 6(2), 128.

“The In-Si system“.

 

In-Sn                

 

Update from SOLDERS: Name change for BETA and missing data.

Sn Data for the In-Sn system are from an unpublished assessment by

I. Ansara. Data for bcc_a2, fcc_a1, hcp_a3 and hcp_zn assessed by

A. T. Dinsdale for work on solder systems.

 

In-Yb

 

F.  Gao, S. L. Wang, C. P. Wang, X. J. Liu: CALPHAD, 35, 1-5 (2011).       "Thermodynamic aassessments of the In-Eu and In-Yb systems".

 

In-Zn                

 

Updates from SOLDERS: Estimated missing data.

B. J. Lee:  CALPHAD, 1996, 20(4), 471-480.

“Thermodynamic assessment of the Sn-Zn and In-Zn binary systems”.

 

Ir-Ni                 

 

Data for the Ir-Ni system are from an unpublished assessment of

J. Korb (2004), supplied by GTT to SGTE in 2005.

 

Ir-Pd

 

P. J. Spencer: unpublished assessment, 1998.

                             

Ir-Pt                

 

Data for the Ir-Pt system are from an unpublished assessment of 

J. Korb and T. Jantzen (2004), supplied by GTT to SGTE in 2005.

 

Ir-Rh                

 

Data for the Ir-Rh system are from an unpublished assessment of  

J. Korb and T. Jantzen (2004), supplied by GTT to SGTE in 2005.

 

Ir-Ru                

 

Data for the Ir-Ru system are from an unpublished assessment of

J. Korb (2004), supplied by GTT to SGTE in 2005.

 

Ir-Zr

 

H. Ran, Z. Du:  Journal of Alloys and Compounds, (2005).

               

K-Rb                

 

Data for the K-Rb system are from an unpublished assessment of

M. H. Rand (AERE Harwell, report).

 

La-Mg                

 

C. Guo, Z. Du:  J. AllComp, 385 (2004) 109-113.

 

La-Ni                

 

Z. Du, D. Wang, W. Zhang:  J. Alloys Compds., 1998, 264, 209-213. “Thermodynamic assessment of the La-Ni system”).

 

La-V

 

W. Chan, M. C. Gao, O. N. Dogan, P. King:  JPED, 31(5) 425-432.       "Thermodynamic assessment of V-rare earth systems systems".

 

Li-Mg                

 

N. Saunders:  CALPHAD, 1990, 14(1), 61-70. “A review and

thermodynamic assessment of the Al-Mg and Mg-Li systems”.

 

Li-N                

 

P. Franke, unpublished optimization 

element data:  SGTE unaries, Li3N (solid) from SGTE substance database

but H and S adjusted to selected delta-H0 and delta-S0 of

W. J. Wang, W. X. Yuan, Y. T. Song, X. L. Chen: J. Alloys Comp., 352 (2003) 103-105, liquidus optimised to exp. data.

 

Li-Na

 

Shengjun Zhang, Dongwon Shin and Zi-Kui Liu:

CALPHAD, 2003, 27,        235-241.

 

 

Li-Si                

 

Braga M. H., Malheiros L. F., Ansara I.:

J. Phase Equil., 1995, 16(4), 324-330.

“Thermodynamic assessment of the Li-Si system”.

Note: The second dataset was used.

                        T max = 4890 K

 

Li-Sn

 

F. Yin, X. Su, Z. Li, J. Wang:

Journal of Alloys and Compounds, 393 (2005) 105-108.

 

Li-Zr                

 

Data for the Li-Zr system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Mg-Mn                

 

Data for the Mg-Mn system are from an unpublished assessment of

J. Tibballs published in the COST507 final report :

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Mg-Nd                

 

Cuiping Guo, Zhenmin Du, Changrong Li:

Int. J. Mater. Res., 2008, 99(6), 650-668.

"Thermodynamic description of the Ce-Mg-Y and Mg-Nd-Y systems".

 

Mg-Ni                

 

Jacobs M. H. G., Spencer P. J.:  

CALPHAD, 1998, 22(4), 513-526.

“A critical thermodynamic evaluation of the system Mg-Ni”.

                        T max = 3130 K

Mg-Pr

 

Cuiping Guo, Zhenmin Du:

Journal of Alloys and Compounds,  399 (2005) 183-188.

"Thermodynamic assessment of the Mg-Pr system”.

                        T max = 2980 K

            

Mg-Ru                

 

Data for the Mg-Ru system are from an unpublished assessment of

P. Y. Chevalier and E. Fischer (2004) supplied to SGTE, January 2005.

 

Mg-Sc                

 

Data for the Mg-Sc system are taken from the assessment of

A. Pisch, R. Schmid-Fetzer, G. Cacciamani, P. Riani, A. Saccone,

R. Ferro:  Z. Metallkde., 1998, 89(7), 474-477.

“Mg-rich phase equilibria and thermodynamic assessment of

the Mg-Sc system”.

Further data were assessed in a subsequent publication  of

J. Groebner, R. Schmid Fetzer, A. Pisch, G. Cacciamani, P. Riani,

N. Parodi, G. Borzone, A. Saccone, R. Ferro:

Z. Metallkde., 1999, 90(11), 872-880.

“Experimental investigations and thermodynamic calculation

in the Al-Mg-Sc system”.

 

Mg-Si                 

 

Heufel H., Godecke T., Lukas H. L., Sommer F.:

J. Alloys Compds., 1997, 247(1-2), 31-42.

“Investigation of the Al-Mg-Si system by experiments and

 thermodynamic calculations”.

                        T max = 2550 K

 

Mg-Sn                

 

The data for the Mg-Sn system are from an unpublished assessment of

SG Fries and HL Lukas (Private communication 5/3/99) and are

based on an earlier assessment of

Fries S. G., Lukas H. L.:  J. Chim. Phys., 1993, 90(2), 181-187.

“Optimisation of the Mg-Sn system”.

Note: The data for the hcp phase were modified by A. T. Dinsdale

to take account of new data for hcp Sn.

 

Mg-Sr

 

Y. Zhong, J. O. Sofo, A. A. Luo, Z.-L. Liu:  JALCOM, 2006, 421, 172-178.       "Thermodynamics modelling of the Mg-Sr and Ca-Mg-Sr systems".             

 

Mg-Tb

 

C. Guo, Z. Du:  Journal of Alloys and Compounds, 422(1, 2),

102-108 (2006).

"Thermodynamic optimization of the Mg-Tb and Mg-Yb systems".             

Mg-Tm

 

Z. Du, H. Liu, G. Ling:  Journal of Alloys and Compounds,

373 (2004) 151-155.

Data provided by Thermodata - December 2006.

 

Mg-V                

 

Mg-V system, GTT, unpublished , 2008.

 

Mg-Y                

 

O. B. Fabrichnaya, H. L. Lukas, G. Effenberg, F. Aldinger:

 Intermetallics, 2003, 11, 1183-1188.

“Thermodynamic optimization in the Mg-Y system”.

 

Mg-Yb

 

C. Guo, Z. Du: Journal of Alloys and Compounds, 422(1, 2), 102-108, (2006). Data provided by Thermodata - December 2006.

 

Mg-Zn                

 

The data for the Mg-Zn system are from the assessment of

P. Liang, T. Trafa, J. A. Robinson, S. Wagner, P. Ochin, M. G. Harmelin,

H. J. Seifert, H. L. Lukas, F. Aldinger: Thermochimica Acta 1998, 314, 87-110.  “Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system”,

P. Liang, H. J. Seifert, H. L. Lukas, G. Ghosh, G. Effenberg, F. Aldinger:  CALPHAD, 1998, 22(4), 527-543.

“Thermodynamic modeling of the Cu-Mg-Zn ternary system”. BCC_A2/BCC_B2 added from ACMSZ-1.

                        T max = 3100 K

 

Mg-Zr                

 

Arroyave, R., Shin, D., Liu, Z.-K.: CALPHAD, 29 (2005) 230-238.

“Modification of the thermodynamic Model for the Mg-Zr System”.

 

Mn-Mo

 

SGTE Collected binary systems:  B. J. Lee, KRISS, unpublished research,         during 1993-1995.

                        T min 450 K

 

                                                     

Mn-N                 

 

C. A. Qui, A. Fernandez Guillermet: Report TRITA-MAC 472, (1993),

Z. Metallkde, 1993, 84(1), 11-22.

“Predicative approach to the entropy of Manganese Nitrides and calculation of the Mn-N phase diagram”.

Note: Data for the interaction in the M4N phase were introduced by

A. T. Dinsdale (17/5/99) for consistency with Fe-N data.

 

Mn-Ni                

 

Based on “Thermodynamic optimization of the Mn-Ni system”

Guo, Cuiping; Du, Zhenmin: Inermetallics, v13, n5, p525 – 534, May 2005.

-         TEMPORARILY REMOVED AW 4/12/15

 

Mn-P                

 

The source of the assessed data for the Mn-P system is not known.

                        T max = 3250 K

 

Mn-Pb

 

Data for the Mn-Pb system are from an unpublished assessment of

A. T. Dinsdale (2003).

 

Mn-Sc

 

 A. Pisch, R. Schmid-Fetzer:  Z. Metallkd., 89 (1998) 700-703.

 

Mn-Sm

 

C. P. Wang, H. L. Zhang, S. L. Wang, Z. Lin, X. J. Liu, A. T. Tang,

F. S. Pan:  J. Alloys Compd., 481, 291-95(2009).

"Thermodynamic Assessments of the Mn-Sm and Mn-Ho systems".

                        T min = 400 K

 

Mn-Sn

 

J. Miettinen:  CALPHAD, 2001, 25(1), 43-58.

"Thermodynamic solution phase data for binary Mn-based systems",

Data for the fcc phase modified by atd 10/11/2000 because of revised

data for fcc Sn.

                        T min = 600 K

                        T max = 3140 K

                                                         

Mn-Si                

 

Annika Forsberg, John Agren:  J. Phase Equilibria 14 (1993) 354-363,

Report TRITA-MAC 483 (1992), Fe-Mn-Si,

P.-Y. Chevalier, E. Fischer, A. Rivet:  CALPHAD, 19 (1995), 57-68, Mn-Si.

                        T max = 5700 K

 

Mn-Ti                 

 

Data for the Mn-Ti system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Mn-V                

 

WM. Huang:  TRITA-MAC 441 (1990),

CALPHAD, 1991, 15(2), 195-208.

“A thermodynamic analysis of the Mn-V and Fe-Mn-V systems”.

 

Mn-W                

 

Estimated from the Mn-Ni-W system by Peter Franke.

 

Mn-Y                

 

H. Flandorfer, J. Groebner, A. Stamou, N. Hassiotis, A. Saccone, P. Rogl,

R. Wouters, H. Seifert, D. Maccio, R. Ferro, G. Haidemenopoulos,

L. Delaey, G. Effenberg:  Z. Metallkde., 1997, 88, 529-538.

                        T min = 450 K

 

Mn-Zn

 

J. Miettinen:  CALPHAD, 28, 313-20(2004).  "Thermodynamic

description of the Cu-Mn-Zn system in the copper-rich corner".                  

 

Mn-Zr                

 

Data for the Mn-Zr system are from an unpublished assessment of

K. Hack published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Mo-N     

 

K. Frisk:  Report TRITA-MAC 393 (1989), CALPHAD, 1991, 15(1), 79-106.

“A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems”.

                        T max = 3020 K

Mo-Nb                

 

Data for the Mo-Nb system are from an unpublished assessment by

P. Y. Chevalier.

 

Mo-Ni                

 

Data for the Mo-Ni system are from an assessment of

K. Frisk:  CALPHAD, 1990, 14(3), 311-320.

“A thermodynamic evaluation of the Mo-Ni system”.

Additional data were also provided in the reports  by

K. Frisk: TRITA-MAC 428 (1990) and TRITA-MAC 429 (1990).

Note: The data were modified by A. T. Dinsdale to allow Mo to

occupy the first sublattice of the MU_phase. This was necessary

for compatibility with the Co-Mo system.

Stoichiometric compound data amended to smooth Cps

 - Michael Schick (GTT) – 21/9/2016

                        T min = 350 K

                        T max = 5750 K

 

Mo-P                

 

The data for the Mo-P system are from an unpublished assessment by

P. Gustafson (1990).

 

 

Mo-Pd

 

G. Ghosh, and G. B. Olsen:  

J. Phase Equil., 2000, 21(1), 32-39.

 

Mo-Si                

 

P. Y. Chevalier, E. Fischer:  Thermodata report, June 2003.

 

Mo-Ta

 

Y. Cui, Private communication to SGTE, 1999; Mo-Ni-Ta.

"Experimental Study and Thermodynamic Assessment of the Ni-Mo-Ta Ternary System",

Y. Cui, X. Lu, Z. Jin:

Metall. Mater. Trans. A, A 1999, 30(11), 2735-2744.

 

Mo-Ti                

 

Data for the Mo-Ti system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Mo-V                

 

J. Bratberg, K. Frisk:  CALPHAD, 26 (2002) 459-476.

 

Mo-W                

 

Data for the Mo-W system are from an assessment of

P. Gustafson:  Z. Metallkde, 1988, 79(6), 388-396.

“An experimental study and a thermodynamic evaluation of the

Fe-Mo-W  system”.

Further data were provided by

P. Gustafson:  Z. Metallkde., 1988, 79(6), 397-402.

“A thermodynamic evaluation of the C-Mo-W system”.

J.-O. Andersson:  CALPHAD, 1988, 12(1), 9-23.

“A thermodynamic evaluation of the Fe-Mo-C system”.

 

Mo-Y

 

W. Chan, M. C. Gao, O. N. Dogan, P. King:

JPED, 31(5) 414-420.

"Thermodynamic assessments of Mo-Ce and Mo-Y systems".

 

Mo-Zr

 

R. J. Perez, B. Sundman:  CALPHAD, 27, 253-262 (2003).

Data provided by Thermodata - December 2006.

 

N-Nb

 

Weiming Huang:  Metall. Trans. A, 1996, 27, 3591-3600.

“Thermodynamic assessment of the Nb-N system”.

 

N-Ni                

 

A. Fernandez Guillermet, K. Frisk:  Int. J. Thermophys., 1991, 12(2), 417-431. “Thermodynamic properties of nickel nitrides and phase stability in the Nickel-Nitrogen system”.

 

N-Si

 

P. Gustafson:  Inst. Met. Res. (Sweden) (1990)).

Note: It is not clear whether these data are appropriate for

steel systems only.

 

N-Ta                

 

K. Frisk:  J. Alloys and Compounds, 1998, 278, 216-226.

“Analysis of the phase diagram and thermochemistry in the Ta-N

and the Ta-C-N systems”.

                        T max = 5250 K

 

N-Ti                

 

K. Zeng, R.  Schmid-Fetzer:  Z. Metallkde, 1996, 87, 540-554.

“Critical assessment and thermodynamic modeling of the Ti-N system”.

 

N-U

 

P.-Y. Chevalier, E. Fischer, B. Cheynet:

J. Nucl. Mater., 2000, 280, 136-150,

Thermodynamic modelling of the N-U system,

Modified by at 1/3/2007,

Agreement with original assessment is not perfect - particularly

the low temperature equilibria involving U2N3_alpha,

Data for U2N3_alpha modified by at 3/11/10 to avoid being more

stable than the liquid.                                                        

 

N-V                

 

Yong Du, R. Schmid-Fetzer, H. Ohtani:

Z. Metallkde, 1997, 88(7), 545-556.

“Thermodynamic assessment of the V-N system”.

 

N-W                

 

A. Fernandez Guillermet, S. Jonsson:  

Z. Metallkde., 1993, 84(2), 106-117.

“Thermodynamic analysis of stable and metastable W nitrides

and calculation of the W-N phase diagram”.

                        T max = 5710 K

 

N-Zr

 

X. Ma, C. Li, K. Bai, P. Wu, W. Zhang:

Journal of Alloys and Compounds, 373 (2004) 194-201,

Data provided by Thermodata - December 2006.

 

Na-Rb                

 

Data for the Na-Rb system are from an unpublished assessment of

M. H. Rand (AERE Harwell, report).

 

Nb-Ni                 

 

A. Bolcavage, U. R. Kattner:  J. Phase Equil., 1996, 17(2), 92-100.

 “A reassessment of the calculated Ni-Nb phase diagram”.

 

Nb-Si

 

H. Liang and Y. A. Chang:

Intermetallics, 1999, 7, 561-570.

 

Nb-Sn                

 

C. Toffolon, C. Servant, B. Sundman:

J. Phase Equil, 1998, 19(5), 479-485.

“Thermodynamic assessment of the Nb-Sn system”.

 

Nb-Ta

 

W. Xiong, Y. Du, Y. Li, B. Y. Huang, H. H. Xu, H. L. Chen, Z. Pan:         CALPHAD, 2004, 28, 133-140.

 

Nb-Ti                

 

Data for the Nb-Ti system are from an unpublished assessment of  

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Nb-V                

 

K. C. Hari Kumar, P. Wollants, L. Delaey:

CALPHAD, 1994, 18(1), 71-80.

“Thermodynamic calculation of Nb-Ti-V phase diagram”.

 

Nb-W

 

Unpublished work by A. Fernandez Guillermet and Weiming Huang,        referred to in:

Weiming Huang, M. Selleby:  Z. Metallkde., 1997, 88(1), 55-62.        "Thermodynamic assessment of the Nb-W-C system”.

 

Nb-Zr     

 

A. Fernandez Guillermet:  Z. Metallkde., 1991, 82(6), 478-487. “Thermodynamic analysis of the stable phases in the Zr-Nb system

   and calculation of the phase diagram”.

Nd-Pr                

 

G. Cacciamani, R. Ferro, H. L. Lukas:

Z. Metallkde., 1992, 83, 669-672.

“Assessment of the Nd-Sb and Pr-Sb binary systems and

 calculation of the Nd-Pr-Sb ternary system”.

 

Nd-Sb                

 

G. Cacciamani, R. Ferro, H. L. Lukas:

Z. Metallkde., 1992, 83, 669-672.

“Assessment of the Nd-Sb and Pr-Sb binary systems and

calculation of the Nd-Pr-Sb ternary system”.

 

Nd-Sc

 

Susanne Norgren, Thesis, KTH, 2000.

 

Nd-Y

 

Cuiping Guo, Zhenmin Du, Changrong Li:

Int. J. Mat. Res. 2008, 99(6), 650-668.

"Thermodynamic description of the Ce-Mg-Y and Mg-Nd-Ysystems".

 

Ni-P                

 

The source of data for the Ni-P system is unknown.

                        T max = 5880 K

 

Ni-Pb                

 

Updates from SOLDERS: Estimated data

Cui Ping Wang, Xing Jun Liu, I. Ohnuma, R. Kainuma, K. Ishida:

CALPHAD, 2000, 24(2), 149-167.

“Thermodynamic assessment of the Cu-Ni-Pb system”.

 

Ni-Ru                

 

Data for the Ni-Ru system are from an unpublished assessment of

P. Y. Chevalier and E. Fischer (2001) supplied to SGTE in January 2005.

 

Ni-Pd                

 

From SOLDERS:  Source of data:

G. Ghosh, C. Kantner and G. B. Olson:

J. P. E., 1999, 20(3), 295-308,

The Dataset gives a miscibility gap in the fcc phase at lower

temperatures. It is not clear whether this is correct.

 

Ni-Si                

 

Y. Du, J. C. Schuster:

Metall. Mater. Trans. A, 30A (1999) 2409-2418.

Liquid revised in order to shift the inverse miscibility gap above 6000 K.

 

Ni-Sm

 

Xuping Su, Weijing Zhang and Zhenmin Du:

J. Alloys and Compounds, 1998, 278, 182-184.

                        T max = 4190 K

 

Ni-Sn                

 

From SOLDERS:  Based on

H. S. Liu, J. Wang, and Z. P. Jin:

CALPHAD, 2004, 28(4), 363-370. 

Changes to unaries for intermetallics by Michael Schick to smooth Cps

 

Ni-Sr

 

Y. Peng, D. Zhao, B. Hu, L. Zhou, Y. Du, T. Gang, S. Liu, K. Cheng:

JPED, 32(1) 42-47 (2011).

"Thermodynamic modelling of the Sr-M (M=Fe, Mn, Ni, Ti, V) systems".

 

Ni-Ta                

 

Y. Cui, Z. Jin:  Z. Metallkde, 1999, 90(3), 233-241.

“Experimental study and reassessment of the Ni-Ta system”. 

 

Ni-Ti                

 

P. Bellen, K. C. Hari Kumar, P. Wollants:

Z. Metallkde, 1996, 87(12), 972-978.

“Thermodynamic assessment of the Ni-Ti phase diagram”.

 NI3TI phase amended by P. Franke to discourage

phase appearing above 1920K at x(Ti)=0.1.

                        T max = 4980 K

Ni-V                

 

Data for the Ni-V system are from an unpublished assessment of  

J. Korb and K. Hack published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

                        T min = 400 K

Ni-W                

 

Data for the Ni-W system are from the assessment of

P. Gustafson, A. Gabriel, I. Ansara:  Report TRITA 0263(1985),

Z. Metallkde, 1986, 78, 151-156).

Additional data were provided by

A. Fernandez Guillermet: TRITA-MAC 373(1988),

“Thermodynamics of the Co-Ni-W, A preliminary calphad analysis”.

New parameters for NiW, Ni4W and NiW2 to remove problems from

Neumann-Kopp. – Michael Schick, GTT 10/10/2016

                        T min = 450 K

 

Ni-Y

 

Zhenmin Du, Weijing Zhang:  J. Alloys and Compounds, 1996, 245, 164-167.

     

Ni-Zn                

 

From SOLDERS: J. Miettinen: CALPHAD, 2003, 27, 263-274,

 - modified version of

G. P. Vassilev, T. Gomez-Acebo, J.-C. Tedenac:  J.P.E., 2000, 21(3), 287-301.

                        T max = 5630 K

 

Ni-Zr                

 

Data for the Ni-Zr system are taken from the assessment of

G. Ghosh:  J. Mater. Res., 1994, 9(3), 598-616.

“Thermodynamics and kinetics of stable and metastable phases

in the Ni-Zr system”.

Data for the Laves_c14 and Laves_c15 were provided by

I. Ansara, N. Dupin, J. M. Joubert, M. Latroche, A. Percheron-Guegan:

J. Phase Equilibria, 1998, 19(1), 6-10.

“Thermodynamic study of the Cr-Ni-Zr system”.

 

Os-Si

 

Y.Q. Liu, G. Shao, K. P. Homewood:   JAllComp, 320 (2001) 72-79,

Data provided by Thermodata - December 2006.

                           

P-Sb                

 

Data for the P-Sb system were from an unpublished assessment of

I Ansara and C Chatillon, but reported in the paper by

I. Ansara, C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida,

M. Hillert, B. Sundman, B. B. Argent, A. Watson, T. G. Chart, T. Anderson:  CALPHAD, 1994, 18(4), 177-222.

A binary database for III-V compound semiconductor systems”.

 

P-Si                 

 

Data for the P-Si system are from an unpublished NPL assessment ,

revised September 2004.

 

Pb-Pd                

 

Data for the Pd-Pb system are from an assessment by

G. Ghosh:  J. Phase Equil, 1999, 20(3), 309-315.

“Thermodynamic modeling of the Palladium-Lead system”.

Note: These data are slightly different from those in published by

G. Ghosh: Metall. Mater. Trans. A, 1999, 30A, 5-18.

“Thermodynamic modeling of the Palladium-Lead-Tin system”.  

Missing estimated data from SOLDERS.

                        T max = 3020 K

Pb-Pt

 

Z. H. Long, X. M. Tao, H. S. Liu, Z. P. Jin: JPED, 2009 30(4) 318-322.

"First-principle calculations assisted hermodynamic assessment of

the Pt-Pb system”

                                                       

Pb-Sb                

 

Ohtani H., Okuda K., Ishida K.:

J. Phase Equil., 1995, 16(5), 416-429.

“Thermodynamic study of phase equilibria in the Pb-Sn-Sb system”.

Missing estimated data from SOLDERS.

 

Pb-Si                

 

R. W. Olesinski, G. J. Abbaschian:

Bull. Alloy Phase Diagrams, 1984, 5(3), 271-3.

“The Lead-Silicon system”.

 

Pb-Sn                

 

Data for the Pb-Sn system are from the assessment of

Ohtani H., Okuda K., Ishida K.:

J. Phase Equil., 1995, 16(5), 416-429.  “Thermodynamic study of phase equilibria in the Pb-Sn-Sb system”.

Note: Data for the fcc and liquid phase revised by A. T. Dinsdale

to take account of revised unary data for fcc Sn.

 

Pb-Te

 

W. Gierlotka, J. Lapsa, K. Fizner:  JPED, 31(6), 509-517.

"Thermodynamic description of the Ag-Pb-Te system”.

 

Pb-Tl                 

 

Data for the Pb-Tl system are from an unpublished assessment by

I. Ansara, H.L. Lukas and S. G. Fries.

 

Pb-Zn                

 

Srivastava M., Sharma R. C.:  J. Phase Equil., 1993, 14(6), 700-709. “Thermodynamic analysis and phase equilibria calculations of

Pb-Zn,  Sn-Zn, and Pb-Sn-Zn systems”.

Note:  Missing estimated data from SOLDERS.

 

Pb-Zr                

 

Dixon P. R., Argent B. B., Chart T. G.:  CALPHAD, 1998, 22(3), 397-416.

“The alloy systems Zirconium-Cerium and Zirconium-Lead”.

 

Pd-Rh                

 

Data for the Pd-Rh system are from an unpublished assessment of

J. Korb (2004), supplied by GTT to SGTE in 2005.

 

Pd-Ru

 

SGTE Noble metals database compiled by Philip Spencer.

 

Pd-Sc

 

Zhemin Du, Changrong Li, Lunwen Lu:  Z. Metallkde, 2002, 93(4), 277-280.        "Thermodynamic assessment of the Pd-Sc system",  

Modified by at 12/7/2007. 

Interactions introduced for bcc and hcp,

Data for fcc modified to use adopted unary data for Sc.

 

 Pd-Si

 

Zhenmin Du, Cuiping Guo, Xiaojian Yang, Ting Liu:

Intermetallics, 14 (2006) 560-569.

"A thermodynamic description of the Pd-Si-C system".                     

                        T max =3130 K       

Pd-Sm                

 

Z. Du, H. Yang:  Z. Metallkd., 91 (2000) 455-459.

 

Pd-Sn                

 

G. Ghosh:  Metall. Mater. Trans. A, 1999, 30A, 5-18.

“Thermodynamic modeling of the palladium-lead-tin system”.

Update from SOLDERS:  FCC_A1 parameters changed to reflect

change in fcc  Sn. Estimated parameters added.

                        T max = 4030 K

 

Pd-Tb                

 

Z. Du, H. Yang, K. Han:  Z. Metallkd., 91 (2000) 988-991.

 

Pd-Zn                

 

From SOLDERS:  Assessment of Ales Kroupa, Jiri Vizdal - 1/9/2005.

 

Pd-Zr

 

Zhenmin Du:  Z. Metallkde., 2003, 94(8), 864-870.

"Thermodynamic assessment of the Pd-Zr system".

                        T max = 2740 K

 

Pr-Sb                

 

G. Cacciamani, R. Ferro, H. L. Lukas:

 Z. Metallkde., 1992, 83, 669-672.

“Assessment of the Nd-Sb and Pr-Sb binary systems and

calculation of the Nd-Pr-Sb ternary system”.

 

Pt-Rh

 

K. T. Jacob, S. Priya, Y. Waseda:

Metall. Mater. Trans. A, 1998, 29A, 1545-1550.

"Thermodynamic properties and phase equilibria for Pt-Rh alloys".

 

Pt-Ru

 

SGTE Noble metals database compiled by Philip Spencer.

                 

Pt-Si                

 

L.L. Xu, J. Wang, H.S. Liu, Z.P. Jin:

CALPHAD, Vol. 32, No 1, Pages 101-105, 2008.

Thermodynamic assessment of the Pt-Si binary system

Note: Data amended for stoichiometric phases to remove problem with

Cps resulting from Neumann Kopp – Michael Schick (GTT) 11/10/16

 

Pt-Ta

 

SGTE Noble metals database compiled by Philip Spencer.

 

Pt-Ti                

 

Mei Li, Wei Han, Changrong Li:

Journal of Alloys and Compounds, Vol. 461, Issues 1-2, Pages 189-194,

(11 August 2008).  “Thermodynamic assessment of the Pt-Ti system”.

 

Ru-Si                

 

Z. H. Long, H. S. Liu, Z. P. Jin:

Journal of Alloys and Compounds 479 (2009) 262-267.

“Thermodynamic description of Ru-Ge-Si ternary system”.

                        T max = 5420 K

 

Ru-Sn

 

Z. Long, F. Yin, Y. Liu, H. Liu Z. Jin:  JPED, 2012, 33(2), 97-105.       "Thermodynamic description of the Ru-(Si, Ge)-Sn Ternary Systems".

        

Ru-Zr                

 

Data for the Ru-Zr system are from an unpublished assessment of

P. Y. Chevalier and E. Fischer (1995) supplied to SGTE in Jan. 2005.

 

Sb-Si                

 

R. W. Olesinski, G. J. Abbaschian:

Bull. Alloy Phase Diagrams 1985, 6(5), 445-448.

“The Sb-Si system”.

 

Sb-Sm                

 

G. Cacciamani, G. Borzone, N. Parodi, R. Ferro:

Z. Metallkde., 1996, 87(7), 562-567.

“Constitutional properties of rare earth antimonides:

 Trends and optimization Sm-Sb and Er-Sb alloys”.

 

Sb-Sn                

 

Data for the Sb-Sn system are from an unpublished assessment of

J. Vizdal and A. Kroupa (2005). This makes use of new unpublished

DSC data of Vassilev in 2004.

Two earlier assessments used different unary data for the Sb in the

metastable BCT_A5 structure from those adopted by SGTE:

B. Jonsson and J. Agren: Mater. Sci. Technol, 1986, 2, 913.

"A thermodynamic assessment of the Sb-Sn system",

H. Ohtani and K. Ishida: J. Elect. Mat., 1994, 23(8), 747-755.

"A thermodynamic study of the phase equilibria in the

Bi-Sn-Sb system".

Data for SB2SN3 amended to smooth Cp – Michael Schick 21/10/2016

 

Sb-Zn                

 

From SOLDERS:  X. J. Liu, C. P. Wang, I. Ohnuma, R. Kainuma, K. Ishida:

J. P. E. 2000, 21(5), 432-442.

“Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems”. Replaces L. A. Zabdyr, CALPHAD 1997, 21(3), 349-358.

“Phase equilibria in ternary Cd-Sb-Zn system".

                        T ma x = 2740 K

 

Sc-Si                

 

Supplied by GTT

 

Sc-V                

 

Supplied by GTT

 

Sc-Zr                

 

Supplied by GTT

 

Se-Te                

 

G. Ghosh, R. C. Sharma, D. T. Li, Y. A. Chang:

J. Phase Equil., 1994, 15(2), 213-224.

“The Se-Te (Selenium-Tellurium) system”.

                        T max = 2270 K

 

Si-Sn                

 

Z. Long, F. Yin, Y. Liu, H. Liu, Z. Jin:

JPED 2012, 33(2), 97-105.

“Thermodynamic description of the Ru-(Si, Ge)-Sn ternary Systems”.

 

Si-Ta                

 

C. Vahlas, P.-Y. Chevalier and E. Blanquet: CALPHAD, 1989, 13, 273-292.

“A thermodynamic evaluation of four Si-M (M = Mo, Ta, Ti, W)

binary systems”.

Note:  There is a spurious miscibility gap in the liquid at high temperatures.

 

Si-Ti                

 

H. J. Seifert, unpublished work, MPI Metallforsch., Stuttgart, 1998,

cited in:

Y. Du, C. He, J. C. Schuster, S. Liu, H. Xu: Z. Metallkd., 97 (2006) 543-555.

 

Si-U                

 

P.Y. Chevalier, E. Fischer, Thermodata report, March 2004, revised Sept. 8, 2004. Updates Juergen Korb, 2013

                        T max = 4070 K

 

Si-V                 

 

Data for the Si-V system are from an unpublished assessment of

M. H. Rand and N. Saunders published in the COST507 final report:  COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Si-W                

 

P.Y. Chevalier, E. Fischer, Thermodata report, June 2003.

 

Si-Y                

 

Q. Ran, H. L. Lukas, G. Effenberg, G. Petzow:

Z. Metallkde, 1989, 80(6), 402-405.

“A thermodynamic assessment of the Si-Y system”.

 

Si-Yb

 

S. Brutti, G. Balducci, A. Ciccioli, G. Gigli: CALPHAD, 29 (2005)

254-261. Data provided by Thermodata - December 2006.

                   

Si-Zn                

 

Jacobs M. H. G., Spencer P. J.: CALPHAD, 1996, 20(3), 307-320.

“A critical thermodynamic evaluation of the systems Si-Zn and

Al-Si-Zn”.  BCC_A2 parameter taken from ACMSZ-1 (COST507).

 

Si-Zr                

 

Gueneau C., Servant C., Ansara I., Dupin N.:

CALPHAD, 1994, 18(3), 319-327.

“Thermodynamic assessment of the Si-Zr system”.

                        T max = 2000 K

Sn-Ti                

 

Data for the Sn-Ti system are from an unpublished assessment of

F. H. Hayes published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

Note: The data for the hcp phase were modified to be consistent with a change in Sn hcp data.

                        T min = 500 K

                        T max = 2000 K

 

Sn-V                

 

T. Studnitzky, B. Onderka, R. Schmid-Fetzer:  Z. Metallkd., 93 (2002) 48-57.

                        T max = 3330 K

 

Sn-Zn                

 

Data for the Sn-Zn system are from an unpublished assessment of

S. G. Fries and H. L. Lukas published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499. BCC_A2 and DIAMOND_A4 taken from SOLDERS.

 

Sn-Zr                

 

Data for the Sn-Zr system are from an unpublished assessment of

J. Korb and K. Hack published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

Note: The data for the hcp phase were modified to take account of

 new unary for hcp Sn.

                        T max = 2000 K

 

Sr-Zn                 

 

Yu Zhong, Koray Ozturk, Zi-Kui Liu:

Journal of Phase Equilibria, Vol. 24, N° 4, Pages 340-346, 2003.

Thermodynamic modelling of the Ca-Sr-Zn ternary system,

                        T max = 2770 K

 

Ta-Ti                

 

Data for the Ta-Ti system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Ta-V

 

C. A. Danon, C. Servant:  Journal of Alloys and Compounds, 366 (2004)       191-200.  Data provided by Thermodata - December 2006.

 

 Ta-W

 

Huang and Guillermet, unpublished but data quoted in Zhou and Liu,        sumbitted to Materials Trans.  2002.

 

Ta-Zr

 

A. Fernandez Guillermet:  J. Alloys Compounds, 1995, 226, 174-184.

 

Th-Zn                

 

Z. S. Li, X. J. Liu, M. Z. Wen, C. P. Wang, A. T. Tang, F. S. Pan:

J. Nucl. Mater.,  396, 170-75(2010).

 

Ti-V                

 

G. Ghosh:  J. Phase Equilibria, 23 (2002) 310-328.

 

Ti-W                

 

Data for the Ti-W system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Ti-Zn

 

K. Doi, S. Ono, H. Ohtani, M. Hasebe:

J. Phase Equilib. Diff., 2006, 27(1), 63-74. "Thermodynamic study of

the phase equilibria in the Sn-Ti-Zn ternary system".

 

Ti-Zr

 

K. C. Hari Kumar, P. Wollants, L. Delaey:

J. Alloys and Compounds, 1994, 206, 121-127.

                              

Tl-Zn                

 

S. S. Kim, T. H. Sanders:  Z. Metallkde, 94(4), 390-395 (2003).

 

U-V                

 

A. Berche, T. Alpettaz, S. Chatain, C. Blanc, S. Gossé, C. Guéneau:

The Journal of Chemical Thermodynamics, 2011, 43(3), 458-466. "Thermodynamic study of the uranium-vanadium system".

 

U-Zr                

 

Kurata M., Ogata T., Nakamura K., Ogawa T.:

J. Alloys Compd., 1998, 271-273, 636-640.

“Thermodynamic assessment of the Fe-U, U-Zr and Fe-U-Zr systems”.

 

V-W                 

 

J. Bratberg:  Z. Metallkd., 96 (2005) 335-344.

 

V-Y                

 

W. Chan, M.C. Gao, O.N. Dogan, P. King:  JPED, 31(5) 425-432. "Thermodynamic assessment of V-rare earth systems systems".

 

V-Zr                

 

Data for the V-Zr system are from an unpublished assessment of

J. Korb and K. Hack published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

                        T max = 5360 K

 

W-Zr                 

 

Thermodata - suppied to SGTE July 2005.

 

Y-Zr                

 

H. Flandorfer, J. Groebner, A. Stamou, N. Hassiotis, A. Saccone,

P. Rogl, R. Wouters, H. Seifert, D. Maccio, R. Ferro, G. Haidemenopoulos,

L. Delaey, G. Effenberg:  Z. Metallkde., 1997, 88, 529-538.

 

Zn-Zr

 

R. Attoyave, Z. K. Liu: CALPHAD, 30(1), 1-13 (2006).

Model l – LIQUID phase modelled without associate

Data for stoichiometric phases amended to smooth Cps

- Michael Schick 21/10/2016

T max = 2990 K

Ternary systems

 

Ag-Au-Bi

 

Taken from SOLDERS. Based on:

E. Zoro, C. Servant, and B. Legendre:  CALPHAD, 2007, 31(1), 89-94, “Thermodynamic assessment of the Ag-Au-Bi system".

 

Ag-Au-Sb

 

Taken from SOLDERS. Based on:

E. Zoro, C. Servant, B. Legendre:  Journal of Phase Equilibria

and Diffusion.

 

Ag-Bi-Sn

 

Taken from SOLDERS. Based on an assessment by L. Zabdyr et al, 2005.

 

Ag-Cu-Ni

 

From Alan Dinsdale, October 2005. No ternary parameter is necessary.

 

Ag-Cu-Pb

 

Data for the Ag-Cu-Pb system are from an unpublished assessment of

H. L. Lukas (1998), updated from an earlier assessment of

F. H. Hayes, H. L. Lukas, G. Effenberg, and G. Petzow:

Z. Metallkde., 77 (1986) 749-754).

“A thermodynamic optimisation of the Cu-Ag-Pb system”.

 

Ag-Cu-Sn

 

J. A. Gisby, A. T. Dinsdale, July, August 2002. Modified March 2008 to account for revision of Ag-Sn data.

 

Ag-In-Sn

 

X. J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida,

Z. Moser, W. Gasior, J. Pstrus:  J. of Electronic Materials, 31 (11)

(2002) 1139-1151.

 

Ag-Ni-Sn

 

Assessment in progress – A. T. Dinsdale, October 2005.

 

 

Al-C-Si

 

J. Groebner, H. L. Lukas, F. Aldinger:  CALPHAD, 1996, 20, 247-254. “Thermodynamic Calculation of the Al-Si-C System“.

Note: The dataset may not give best agreement with experiment

since the C-Si data in the database are different from those used in

this assessment.

 

 

Al-Ca-Si

 

Michael Schick, GTT. Reoptimisation owing to changes in Al-Ca

And Ca-Si. Updated 23/6/2016.

 

Al-Cu-Li

 

Data for the Al-Cu-Li system are from an unpublished assessment of

N. Saunders published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Al-Cu-Mg

 

T. Buehler, S. G. Fries, P. J. Spencer, H. L. Lukas:

J. Phase Equil., 1998, 19(4), 317-333.

“A thermodynamic assessment of the Al-Cu-Mg ternary system”.

Updates from ACMSZ-1.

 

Al-Cu-Si

 

Taken from ACMSZ, based on X. M. Pan, C. Lin, J. E. Morral, H. D. Brody:

J. P. E. D., 26 (2005) 225-233 (Al-Cu-Si).

 

Al-Cu-Zn

 

Taken from ACMSZ-1, based on H. Liang, Y. A. Chang:

J. P. E., 19 (1998) 25-37.

 

Al-Fe-Mn

 

Data for the Al-Fe-Mn system are from an unpublished assessment of

A. Jansson and T. G. Chart published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Al-Fe-Si

 

Data for the Al-Fe-Si system are from an unpublished assessment of

P. Kolby published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Al-Ga-In

 

Ansara I., Bros J. P., Girard C.:  CALPHAD, 1978, 2(3), 187-196, “Thermodynamic analysis of the Ga-In, Al-Ga, Al-In and the

Al-Ga-In systems”.

 

Al-Ga-Sn

 

The data for the Al-Ga-Sn system are from an assessment based on

Gaune J. L., Gambino M., Bros J. P., Martin-Garin R., Ansara I.: Thermochim.Acta, 1977, 18(2), 217-228. “Contribution to the

thermodynamic study of the ternary Aluminum-Gallium-Tin system”.

 

Al-Mg-Mn

 

Data for the Al-Mg-Mn system are from an unpublished assessment of

I. Ansara published in the COST507 final report:

COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Al-Mg-Si

 

Heufel H., Godecke T., Lukas H. L., Sommer F.:

J. Alloys Compds., 1997, 247(1-2), 31-42. “Investigation of the

Al-Mg-Si system by experiments and thermodynamic calculations”.

 

Al-Mg-Zn

 

The data for the Al-Mg-Zn system are from the assessment by

P. Liang, T. Trafa, J. A. Robinson, S. Wagner, P. Ochin, M. G. Harmelin,

H. J. Seifert, H. L. Lukas, F. Aldinger:

Thermochimica Acta, 1998, 314, 87-110. 

“Experimental investigation and thermodynamic calculation of

the Al-Mg-Zn system”.

P. Liang, H. J. Seifert, H. L. Lukas, G. Ghosh, G. Effenberg, F. Aldinger:  CALPHAD, 1998, 22(4), 527-543.

“Thermodynamic modeling of the Cu-Mg-Zn ternary system”.

Note: The data were refined further by Liang et al.,

Werksoffer, 98 Vol 6, "Metalle/simulation",

 ed R. Kopp et al. pp463-8, 1999, New York, Wiley VCH.

 

Al-Mn-Si

 

Data for the Al-Mn-Si system are from an unpublished assessment of

P. Kolby, M. H. Rand and T. G. Chart published in the COST507 report:  COST507 Thermochemical Database for Light Metal Alloys, Vol 2

eds by I. Ansara, A. T. Dinsdale and M. H. Rand, July 1998, EUR18499.

 

Al-Si-Zn

 

M. Jacobs, private communication, quoted in COST507 (Al-Si-Zn).

 

Al-Sn-Zn

 

S. G. Fries, H. L. Lukas, S. Kuang, G. Effenberg:

Proc. Conf. User Aspects of Phase Diagrams, 1992, pp280-286).

 

Au-Bi-Sb

 

J. Wang, F. G. Meng, H. S. Liu, L. B. Liu, Z. P. Jin:

J. Electronic Mater., 36 (5) (2007), 568-577.

“Thermodynamic modeling of the Au-Bi-Sb ternary system”.

 

Au-In-Pb

 

Data for the Au-In-Pb system are from an unpublished assessment by

I. Ansara (1986).

 

Au-In-Sb

 

H. S. Liu, C. L. Liu, C. Wang, K. Ishida:

J. Electron. Mater., 2003, 32(2), 81.  Modified by J. Vrestral, May 2005.

 

Au-In-Sn

 

G. Cacciamani, G. Borzone and A. Watson:

CALPHAD, 33(1), 100-108, (2009). “Thermodynamic modelling

and assessment of the Au-In-Sn system".

 

Au-Ni-Sn

 

X. J. Liu, M. Kinaka, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida:

J. Electr. Mater., 2005, 34(5), 670-679.

Updated unary data to cure Neumann-Kopp anomalies

(Michael Schick, GTT)

 

B-Fe-Nd

 

B. Hallemans, P. Wollants and J. R. Roos:

J. Phase Equilib., 1995, 16(2), 137-149.

“Thermodynamic assessment of the Fe-Nb-B phase diagram”).

Note: The calculated phase diagram for 298 K does not agree

with published version.

 

Bi-Ga-Zn

 

C. Girard:  Thesis (Marseille 1985).

 

Bi-In-Pb

 

D. Boa, I. Ansara:  Thermochimica Acta, 1998, 314, 79-86.

“Thermodynamic Assessment of the Ternary System Bi-In-Pb”.

 

Bi-In-Sn

 

Seung Wook Yoon, B.-S. Rho, H. M. Lee, C.-U. Kim, B.-J. Lee:

Metall. Mater. Trans., 1999, 30A, 1503-1514.

Modified by A. Kroupa, October 2005.

 

Bi-Sb-Sn

 

D. Manasijevic, J. Vrestral, D. Minic, A. Kroupa, D. Zivkovic,

Z. Zivkovic:

J. Alloys and Compounds,  438, n. 1-2, p. 150-157, July 12, 2007.

"Phase equilibria and thermodynamics of the Bi-Sb-Sn ternary system".

 

Bi-Sb-Zn

 

J. Vizdal, M. H. Bragga, A. Kroupa, K. W. Richter, D. Soares,

L. F. Malheiros, and J. Ferreira:  CALPHAD, 31(4) 438-448 (2007). "Thermodynamic Assessment of the Bi-Sn-Zn System".

 

 

C-Co-Cr

 

A. Weidling and B. Jansson:  CALPHAD, 1997, 21(3), 321-333.

“A Thermodynamic Evaluation of the Co-Cr and the C-Co-Cr systems”.

 

C-Co-Fe

 

A. Fernandez Guillermet: Report TRITA-MAC 361 (1987),

Z. Metallkde., 1988, 79(5), 317-329.

“Thermodynamic properties of the Fe-Co-C system”.

Additional data are from further assessment of

A. Fernandez Guillermet:  Report TRITA-MAC 362 (1988),

Z. Metallkde., 1988, 79, 524-536. “Thermodynamic properties of the

Fe-Co-Ni-C system”.

B. Jansson:  IM report (1987).

 

C-Co-Ni

 

A. Fernandez Guillermet:  Report TRITA-MAC 362 (1988),

Z. Metallkde., 1988, 79, 524-536

“Thermodynamic properties of the Fe-Co-Ni-C system”

Additional data are from further assessment of

B. Jansson:  IM report (1987).

 

C-Co-W

 

A. Fernandez Guillermet:  Report TRITA-MAC 371 (1988),

Metall. Trans. A, 1989, 20(5), 935-956.

“Thermodynamic properties of the Co-W-C system”.

Additional data are from further assessment of

B. Jansson:  IM report (1987).

 

C-Cr-Fe

 

J.-O. Andersson: Report TRITA 0207 (1986),

Metall. Trans A, 1988, 19(3), 627-636.

“A Thermodynamic evaluation of the Fe-Cr-C system”.

Modified data for the liquid phase were taken from the work of

B. J. Lee: CALPHAD, 1993, 17, 251. “Revision of thermodynamic

descriptions of the Fe-Cr And Fe-Ni liquid phases”.

 

C-Cr-Mn

 

B.-J. Lee, H. F. Rizzo, T. B. Massalski, M. Nastasi:

Metall. Trans. A, 1993, 24, 1017-1025.

“A thermodynamic Evaluation of the Fe-Cr-Mn-C system”.

 

C-Cr-Mo

 

Caian Qui: Report TRITA-MAC 482 (1992), 

Hillert M., Qiu C.:  J. Phase Equil., 1992, 13(5), 512-521.

“A reassessment of the Fe-Cr-Mo-C system”,

Qiu C.: J. Alloys and Compounds, 1993, 199(1-2), 53-59.

“Thermodynamic analysis and calculation of the Cr-Mo-C system”.

Liquidus surface predicted

C-Cr-N

 

Data for the C-Cr-N system are from unpublished work by

P. Gustafson (1990), Inst. Met. Res., Sweden.

 

C-Cr-Ni

 

B.-J. Lee:  CALPHAD, 1992, 16(2), 121-149.

"On the stability of Cr carbides" and NPL, unpublished work, 1989.

 

C-Cr-Si

 

Y. Du, J. C. Schuster, L. Perring:  J. Am. Ceram. Soc., 83 (2000) 2067-73.

 

C-Cr-Ti

 

J. C. Schuster, Y. Du: CALPHAD, 23 (1999) 393-408.

 

C-Cr-V

 

Lee B.-J., Lee D. N.: Report TRITA-MAC 474, (1991),

Report TRITA-MAC 475, (1991),

J. Phase Equil., 1992, 13(4), 349-364.

“A thermodynamic evaluation of the Fe-Cr-V-C system”.

 

C-Cr-W

 

P. Gustafson: Report TRITA-MAC 348, (1987),

Metall. Trans. A, 1988, 19(10), 2547-2554.

“A thermodynamic evaluation of the C-Cr-Fe-W system”.

 

C-Cu-Fe

 

Data for the C-Cu-Fe system are from an unpublished assessment of

P. Gustafson:  Inst. Met. Res. Sweden (IM-2549) (1990).

 

C-Fe-Mn

 

W. Huang:  Report TRITA-MAC 411, (Rev 1989),

Metall. Trans., 1990, 21(8), 2115-2123.

“A thermodynamic assessment of the Fe-Mn-C system”.

 

C-Fe-Mo

 

J.-O. Andersson: Report TRITA 0321 (1986),

CALPHAD, 1988, 12(1), 9-23.

“A thermodynamic evaluation of the Fe-Mo-C system”.

Further data are taken from the assessment of

Hillert M., Qiu C.: Report TRITA-MAC 482, (1992) Revision,

J. Phase Equil., 1992, 13(5), 512-521.

“A reassessment of the Fe-Cr-Mo-C system”.

 

C-Fe-N

 

H. Du, M. Hillert: Report TRITA-MAC 435 (1990),

Z. Metallkde, 1991, 82(4), 310-316.

“An assessment of the Fe-C-N system”.

 

C-Fe-Nb

 

W. Huang: Report TRITA-MAC 390 (1989),

Z. Metallkde., 1990, 81(6), 397-404.

“A thermodynamic evaluation of the Fe-Nb-C system”.

 

C-Fe-Ni

 

A. Gabriel, P. Gustafson, I. Ansara:  Report TRITA-MAC 285 (1986), CALPHAD, 1987, 11(3), 203-218.

“A thermodynamic evaluation of the C-Fe-Ni system”.

 

C-Fe-Si

 

J. Lacaze, B. Sundman: Metall. Trans. A, 1991, 22A, 2211.

“An assessment of the Fe-C-Si system”.

The data were further modified by

J. Miettinen:  CALPHAD, 1998, 22(2), 231-256.

“Reassessed thermodynamic solution phase data for ternary

Fe-Si-C system” and by P. Franke.

 

C-Fe-Ti

 

L. F. S. Dumitrescu, M. Hillert:  ISIJ Int., 39 (1999) 84-90.

 

C-Fe-V

 

W. Huang:  Report TRITA-MAC 432 (1990),

Z. Metallkde, 1991, 82(5), 391-401.

“A thermodynamic evaluation of the Fe-V-C system”.

Lee B.-J., Lee D. N.: Report TRITA-MAC 474 (1991),

CALPHAD, 1991, 15(3), 293-306.

“A thermodynamic study on the Fe-V-C system”.

 

C-Fe-W

 

P. Gustafson:  Report TRITA 0257 (1985),

Metall. Trans A, 1987, 18, 175-188.

“A thermodynamic evaluation of the C-Fe-W system”.

P. Gustafson:  Report TRITA-MAC 331 (1987),

Z. Metallkde., 1988, 79(7), 421-425.

“A thermodynamic evaluation of the C-Fe-Mo-W system”. 

Updates  for FE6W6C and FEW3C ternary phases from P. Franke.

 

C-Mn-Si

 

The data for the C-Mn-Si system are from an unpublished assessment of

NPL (1989). Data for the hcp_a3 phase were added by A. T. Dinsdale

(Oct. 2006).

 

C-Mn-V

 

W. Huang:  Report TRITA-MAC 441 (1990),

Met. Trans. A, 1991, 22(9), 1911-1920.

“Thermodynamic properties of the Fe-Mn-V-C system”.

Fernandez Guillermet A., Huang W.:  

Int. J. Thermophys., 1991, 12(6), 1077-1102.

“Thermodynamic analysis of stable and metastable carbides

in the Manganese-Vanadium-Carbon System and Predicted

Phase Diagram”.

Liquidus surface predicted

 

C-Mo-N

 

K. Frisk, B. Uhrenius:  Metall. Mater. Trans., 27A (1996) 2869-2880.

Valid for 1000°C < T < 1500°C

 

C-Mo-Ti

 

H.-J. Chung, J.-H. Shim, D. N. Lee:  J. Alloys Comp., 282 (1999) 142-148.

 

C-Mo-V

 

J. Bratberg, K. Frisk:  CALPHAD, 26 (2002) 459-476.

 

C-Mo-W

 

P. Gustafson:  Report TRITA-MAC 330 (1987),

Z. Metallkde., 1988, 79, (6), 397-402.

“A thermodynamic evaluation of the C-Mo-W system”.

P. Gustafson:  TRITA-MAC 331 (1987),

Z. Metallkde, 1988, 79(7), 421-425.

“A thermodynamic evaluation of the C-Fe-Mo-W system”.

 

C-N-Ti

 

 S. Jonsson:  Z. Metallkd., 87 (1996) 713-720, TRITA-MAC 0506, 1992.

B.-J. Lee:  Metall. Mater. Trans. A, 32A (2001) 2423-2439.

 

C-Ni-Si

 

Y. Du, J. C. Schuster:  Metall. Mater. Trans. A, 30A (1999) 2409-2418.

 

C-Ni-Ti

 

Du Yong, J. C. Schuster:  Z. Metallkde., 1998, 89(6), 399-410.

“Experimental investigation and thermodynamic modeling of

the Ni-Ti-C system”.

 

C-Ni-W

 

P. Gustafson, A. Gabriel, I. Ansara:  Report TRITA-MAC  0263(1985),

Z. Metallkde, 1986, 78, 151-156).

 

C-Si-Ti

 

Y. Du, J. C. Schuster, H. Seifert, F. Aldinger:  J. Am. Ceram. Soc.,

83 (2000) 197-203;  adjustments made by Peter Franke.

Liquidus surface predicted

 

C-Ti-W

 

 S. Jonsson:  Z. Metallkd., 87 (1996) 788-795.

 

C-V-W

 

J. Bratberg:  Z. Metallkd., 96 (2005) 335-344.

 

Cd-Ga-In

 

Zakulski W., Moser Z., Rzyman K., Lukas H. L., Fries S. G.,Sikiennik M., Kaczmarczyk R., Castanet R.:

J. Phase Equil., 1993,14(2),184-196. “Thermodynamic studies and phase diagrams of the Cd-Ga-In system”.

 

Co-Cr-W

 

Data for the Co-Cr-W system are from an unpublished assessment of

B. Jansson:  IM report (1987).

 

Co-Fe-N

 

A. Fernandez Guillermet and S. Jonsson:  

Z. Metallkde., 1992, 83(3), 165-175.

“Thermodynamic analysis of the Fe-Co-N system and predictive

approach to the phase diagram”.

Note:  The Fe-N dataset has been modified since this assessment.

 

Co-Fe-W

 

A. Fernandez Guillermet:  Report TRITA-MAC 372 (1988),

Z. Metallkde., 1988, 79(10), 633-642.

 “Thermodynamic calculation of the Fe-Co-W phase diagram”.

 

Co-Ni-W

 

A. Fernandez Guillermet:  Report TRITA-MAC 373(1988).

 “Thermodynamics of the Co-Ni-W, A preliminary CALPHAD analysis”.

 

Cr-Fe-Mn

 

B.-J. Lee:  Metall. Trans. A, 1993, 24(9), 1919-1933.

“A thermodynamic evaluation of the Cr-Mn and Fe-Cr-Mn systems”.

 

Cr-Fe-Mo

 

J.-O. Andersson, N. Lange:  Report TRITA 0322 (1986),

Metall Trans A, 1988, 19(6), 1385-1394.

 “An experimental study and a thermodynamic evaluation of

the Fe-Cr-Mo system”.

 

Cr-Fe-N

 

K. Frisk:  Report TRITA-MAC 0409 (1989), Report TRITA-MAC 422 (1990), Metall. Trans. A, 1990, 21(9), 2477-2488.

“A thermodynamic evaluation of the Cr-Fe-N system”.

 

Cr-Fe-Ni

 

Data for the Cr-Fe-Ni system are from an unpublished assessment of

NPL and KTH.

The liquid data have been modified by

B.-J. Lee:  CALPHAD, 1993, 17(3), 251. “Revision of thermodynamic descriptions of the Fe-Cr And Fe-Ni liquid phases”. Modifications

To FCC_L12 by P. Franke

 

Cr-Fe-P

 

J. Miettinen:  CALPHAD, 1999, 23(1), 141-154.

“Thermodynamic description of Cr-P and Fe-Cr-P systems

at low phosphorus contents”.

 

Cr-Fe-Ti

 

Estimated by Peter Franke, 2008.

 

Cr-Fe-V

 

B.-J. Lee:  Report TRITA-MAC 474 (1991),

Z. Metallkde., 1992, 83(5), 292-299.

“A thermodynamic Evaluation of the Fe-Cr-V system”.

 

Cr-Fe-W

 

Gustafson P.:  Report TRITA-MAC 342, (1987),

Metall. Trans. A, 1988, 19(10), 2531-2546.

“An experimental study and a thermodynamic evaluation of

the Cr-Fe-W system”.

 

Cr-Mn-N

 

K. Frisk:  CALPHAD, 1993, 17(3), 335-349.

“A thermodynamic evaluation of the Cr-Mn-N system”.

 

Cr-Mn-Ti

 

L.Y. Chen, C. H. Li, K. Wang, H. Q. Dong, X. G. Lu, W. Z. Ding:

CALPHAD, 2009, 33(4), 658-663.

"Thermodynamic modelling of Ti-Cr-Mn ternary system".

 

Cr-Mo-N

 

K. Frisk:  Report TRITA-MAC 393 (1989),

CALPHAD, 1991, 15(1), 79-106.

“A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N

and Cr-Mo-N systems”.

 

Cr-Mo-Ni

 

K. Frisk:  Report TRITA-MAC 429 (1990)).

 

Cr-Mo-W

 

Frisk K., Gustafson P.:  Report TRITA-MAC 342, (1987),

CALPHAD, 1988, 12(3), 247-254.

“An assessment of the Cr-Mo-W system”.

Additional data were provided by

P. Gustafson: Report TRITA-MAC 354 (1987).

“A thermodynamic investigation of the C-Cr-Fe-Mo-W system”.

 

Cr-N-Ni

 

K. Frisk:  Report TRITA-MAC 422 (1990).

 

Cr-N-Ti

 

Data for the Cr-N-Ti system are from an unpublished assessment by

P. Gustafson:  Inst. Met. Res., Sweden, 1990.

Incomplete assessment

 

Cr-N-V

 

Data for the Cr-N-V system are from an unpublished assessment by

P. Gustafson:  Inst. Met. Res., Sweden, 1990.

Incomplete assessment

 

Cr-N-W

 

Data for the Cr-N-W system are from an unpublished assessment by

P. Gustafson:  Inst. Met. Res., Sweden, 1990.

Incomplete assessment

 

Cr-Ni-Ta

 

N. Dupin, I. Ansara:  Z. Metallkde, 1996 87(7), 555-561.

“Thermodynamic assessment of the Cr-Ni-Ta system”.

 

Cr-Ni-W

 

P. Gustafson:  Report TRITA-MAC 320 (1986),

CALPHAD, 1987, 12(3), 277-292.

“A thermodynamic evaluation of the Cr-Ni-W system”.

 

Cr-Si-Ti

 

Y. Du, J. C. Schuster:  Scand. J. Metall., 31 (2002) 25-33.

 

Cr-Ti-V

 

 G. Ghosh:  J. Phase Equilibria, 23 (2002) 310-328.

 

Cu-Fe-Ni

 

A. Jansson:  Report TRITA-MAC 340 (1987).

“A thermodynamic evaluation of the Cu-Fe-Ni system”.

 

Cu-In-Sn

 

X. J. Liu, H. S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi,

K. Kameda, K. Yamaguchi:  J. Electron. Mater., 2001, 30(9), 1093

with modifications by Jan Vrestal - May 2005, Oct 2006.

Mods to smooth Cps. Minor change to A2 – Michael Schick – GTT 22/8/16

 

Cu-Fe-P

 

Data for the Cu-Fe-P system are from an unpublished assessment of

P. Gustafson:  Inst. Met. Res., Sweden, 1990.

 

Cu-H-Pd

 

Data for the Cu-H-Pd system are from an unpublished assessment of

W. Huang, S. M. Opalka, D. Wang, T. B. Flanagan:

CALPHAD, 31, 315-29 (2007).

“Thermodynamic modelling of the Cu-Pd-H system”.

      

Cu-Mg-Si

 

Data for the Cu-Mg-Si system are from an unpublished assessment of

T. Buehler, private communication , quoted in COST507.            

                                                         

Cu-Mg-Zn

 

P. Liang, G. Effenberg, F. Aldinger:  CALPHAD, 22 (1998) 527-544.

 

Cu-Ni-Pb

 

Cui Ping Wang, Xing Jun Liu, I. Ohnuma, R. Kainuma, K. Ishida:

CALPHAD, 2000, 24(2), 149-167.

“Thermodynamic assessment of the Cu-Ni-Pb system”.

 

Cu-Ni-Sn

 

Originally based on the assessment of Mietinen: Lab. of Metall., Finland, revised here by Adele Zemenova and Ales Kroupa to model the Ni3Sn

phase as a bcc_a2 and to

ensure compatibility with adopted unary and binary data.

Further revisions provided October 2006.

Dy-Fe-Tb

 

S. Landin, J. Agren:

J. Alloys and Compounds, 1994, 207/208, 449-453.

“Thermodynamic assessment of Fe-Tb and Fe-Dy phase diagrams

and prediction of Fe-Tb-Dy phase diagram”.

Extrapolation from binaries

 

Fe-Mn-N

 

Caian Qiu:  Report TRITA-MAC-0493.

Metall. Trans A., 1993, 24(3), 629-645.

“A thermodynamic evaluation of the Fe-Mn-N system”.

 

Fe-Mn-Ni

 

TEMPORARILY REMOVED AW 4/12/!

From P. Franke, 2008 – Incomplete assessment.

 

Fe-Mn-Si

 

A. Forsberg, J. Agren:  Report TRITA-MAC 483 (1992),

J. Phase Equil., 1993, 14(3), 354-363.

“Thermodynamic evaluation of the Fe-Mn-Si system and

the Gamma/Epsilon martensitic transformation”.

 

Fe-Mn-V

 

W. Huang:  Report TRITA-MAC 441 (1990),

CALPHAD, 1991, 15(2), 195-208.

“A thermodynamic analysis of the Mn-V and Fe-Mn-V systems”.

 

Fe-Mo-N

 

K. Frisk: Report TRITA-MAC 433 (1990).

 

Fe-Mo-Ni

 

K. Frisk: Report TRITA-MAC 428 (1990),

Met. Trans. A, 1992, 23(2), 639-649.

“An experimental and theoretical study of the phase equilibria

in the Fe-Mo-Ni system”.

 

Fe-Mo-P

 

Data for the Fe-Mo-P system are from an unpublished assessment of

P. Gustafson:  Inst. Met. Res. (IM-2549, 1990).

 

Fe-Mo-V

 

The source of the data for the Fe-Mo-V system is unknown.

 

Fe-Mo-W

 

P. Gustafson: Report TRITA-MAC 329 (1987),

Z. Metallkde, 1988, 79(6), 388-396.

“An experimental study and a thermodynamic evaluation of

the Fe-Mo-W system”.

Incomplete assessment

 

Fe-N-Ni

 

K. Frisk:  Report TRITA-MAC 422 (1990),

Z. Metallkde, 1991, 82(1), 59-66.

“A thermodynamic evaluation of the Fe-Ni-N system”.

 

Fe-N-Ti

 

H. Ohtani, M. Hillert:  CALPHAD, 1991, 15(1), 41-52.

“A thermodynamic assessment of the Fe-N-Ti system”.

Ternary liquid parameter from

B. J. Lee: Metall. Mater. Trans. A 32A (2001) 2423-2439.

 

Fe-N-V

 

H. Ohtani, M. Hillert:  CALPHAD, 1991, 15(1), 25-39.

“A thermodynamic assessment of the Fe-N-V system”.

 

Fe-N-W

 

Data for the Fe-N-W system are from an unpublished assessment of

P. Gustafson:  Inst. Met. Res., Sweden, 1990.

Based on estimates

 

Fe-Ni-P

 

Data for the Fe-Ni-P system are from an unpublished assessment of

P. Gustafson:  Inst. Met. Res. (IM-2549, 1990).

 

Fe-Ni-W

 

A. Fernandez Guillermet, L. Ostlund: Report TRITA-MAC 258 (1985),

Met. Trans. A, 1986, 17(10), 1809-1823.

“Experimental and theoretical study of the phase equilibria

in the Fe-Ni-W system”.

 

Fe-Si-Zn

 

Chunsheng Sha, Shuhong Liu, Yong Du, Honghui Xu, Lizun Zhang,

Yuqin Liu: CALPHAD, 2010, 34(4), 405-414.

"Experimental investigation and thermodynamic reassessment of

the Fe-Si-Zn system."                                                     

 

Fe-Ti-W

 

C. A. Qiu:  Z. P. Jin, Scripta Metall., 28 (1993) 85-90.

Partial assessment

 

Fe-U-Zr

 

Kurata M., Ogata T., Nakamura K., Ogawa T.:

J. Alloys Compd., 1998, 271-273, 636-640.

“Thermodynamic assessment of the Fe-U, U-Zr and Fe-U-Zr systems”.

Partial assessment

 

Ga-In-Sb

 

Yang J., Watson A.:  CALPHAD, 1994, 18(2), 165-175.

“An assessment of phase diagram and thermodynamic properties of

the Gallium-Indium-Antimony system”.

 

Ge-Ru-Si

 

Z. H. Long, H. S. Liu, Z. P. Jin:

Journal of Alloys and Compounds, 479 (2009) 262-267.

"Thermodynamic description of Ru-Ge-Si ternary system".                                                         

 

Ge-Ru-Sn

 

Z. Long, F. Yin, Y. Liu, H. Liu Z. Jin:  JPED, 2012, 33(2), 97-105, "Thermodynamic description of the Ru-(Si,Ge)-Sn Ternary Systems".

 

In-Sb-Sn

 

D. Manasijevic, J. Vrestral, D. Minic, A. Kroupa, D. Zivkovic, Z. Zivkovic:

J. Alloys and Compounds, v 438, n 1-2, p 150-157, July 12, 2007.

"Experimental investigation and thermodynamic description of

the In-Sb-Sn ternary system".  

Some data modified.

 

In-Sn-Zn

 

Y. Cui, X. J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, K. Ishida:

 J. of Alloys and Compounds, 320, 234-241 (2001).

 

Mo-N-Ni

 

K. Frisk:  Metall. Trans. A, 23A (1992) 1271-1278,

Report TRITA-MAC 0433 (1990).

Extrapolation from binaries

 

Mo-Ni-W

 

No complete assessment was carried out, but data implied from

unassessed parameter for the MU and SIGMA phases formed from

linear combination of unary data.

 

N-Si-Ti

 

Based on  X. Ma, C. Li, W. Zhang:  J. Alloys.Comp., 394 (2005) 138-147,

but using alternative Ti-binary systems.

Partial assessment

 

Pb-Pd-Sn

 

G. Ghosh:  Metall. Mater. Trans. A, 1999, 30A, 5-18.

“Thermodynamic modeling of the Palladium-Lead-Tin system”.

 

 

Quaternary and higher-order Systems,

 

C-Co-Cr-W

 

B. Jansson:  IM report (1987).

 

C-Co-Fe-Ni

 

A. Fernandez Guillermet:  Z. Metallkde, 1989, 80, 83-94,

Report  TRITA-MAC 374 (1988).

 

C-Co-Fe-Ni-W

 

A. Fernandez Guillermet:  Z. Metallkde, 1989, 80, 83-94,

Report TRITA-MAC 374 (1988).

 

C-Co-Fe-W

 

A. Fernandez Guillermet:  Z. Metallkde, 1989, 80, 83-94,

Report TRITA-MAC 374 (1988).

 

C-Co-Ni-W

 

A. Fernandez Guillermet:  Z. Metallkde, 1989, 80, 83-94,

Report TRITA-MAC 374 (1988).

 

C-Cr-Fe-Mn

 

B.-J. Lee, H. F. Rizzo, T. B. Massalski, M. Nastasi:

Metall. Trans. A, 1993, 24A, 1017-1025.

“A Thermodynamic Evaluation of the Fe-Cr-Mn-C system”.

 

C-Cr-Fe-Mo

 

Data for the C-Cr-Fe-Mo system are from an assessment of

Caian Qiu:  Report TRITA-MAC-0482,

Hillert M., Qiu C.:  J. Phase Equil., 1992, 13(5), 512-521.

“A reassessment of the Fe-Cr-Mo-C system”.

 

C-Cr-Fe-Ni

 

Data for the C-Cr-Fe-Ni system are from an unpublished assessment

of B.-J. Lee, rev. 1991, from SSOL 1992.

 

C-Cr-Fe-Si

 

F. Lindholm:  JPE, 18 432-449, (1997), Fe-solubility to addedCR3SI.

However, from Vienna, 2000, comes C-solubility, therefore,

some dummies are needed - Parameters yet to be assessed.

 

C-Cr-Fe-V

 

B.-J. Lee, D. N. Lee:  J. Phase Equil., 1992, 13(4), 349-364.

“A Thermodynamic evaluation of the Fe-Cr-V-C system”.

 

C-Cr-Fe-W

P. Gustafson:  Metall. Trans. A, 1988, 19, 2547-2554.

"A thermodynamic evaluation of the C-Cr-Fe-W system".

 

C-Fe-Mn-V

 

W. Huang:  Metall. Trans. A, 1991, 22A, 1911-1920.

“Thermodynamic properties of the Fe-Mn-V-C system”.

 

C-Fe-Mo-V

 

P. Gustafson: Inst. Met. Res., Sweden, 1990;

Estimations of C-CR-FE-V, C-CR-FE-MO-V-W, FE-N-W, FE-MN-N,

FE-N-SI, CR-N-V, C-CR-N, FE-MO-N, CR-N-W, CR-TI-N.

 

C-Fe-Mo-W

 

P. Gustafson:  Z. Metallkde, 1988, 79, 421-425,

Report TRITA-MAC 331 (1987).

 

C-Fe-Ni-W

 

A. Fernandez Guillermet:  Z. Metallkde, 1987, 78, 165-171,

Report TRITA-MAC 261 (rev. 1985),

High Temp. Sci.; 1986, 22, 161-177, Report TRITA-MAC 262 (1985).               

 

C-Fe-V-W

 

P. Gustafson:  Inst. Met. Res., Sweden, 1990;

Estimations of C-CR-FE-V, C-CR-FE-MO-V-W, FE-N-W, FE-MN-N,

FE-N-SI, CR-N-V, C-CR-N, FE-MO-N, CR-N-W, CR-TI-N.                       

 

C-Cr-Mo-V

 

J. Bratberg:  Z. Metallkd., 96 (2005) 335-344.

 

Co-Fe-Ni-W

 

A. Fernandez Guillermet:  Z. Metallkde, 1989, 80, 83-94,

Report TRITA-MAC 374 (1988).

 

Cr-Fe-Mn-N

 

C. Qiu:  Metall. Trans. A, 24A (1993) 2393-2409,

Report TRITA-MAC 0507.

 

Cr-Fe-N-Ni

 

K. Frisk: Thesis, KTH, Sweden; Report TRITA-MAC-0422,

Z. Metallkde, 1991, 82(2), 108-117.

“A thermodynamic evaluation of the Cr-Fe-Ni-N system”.