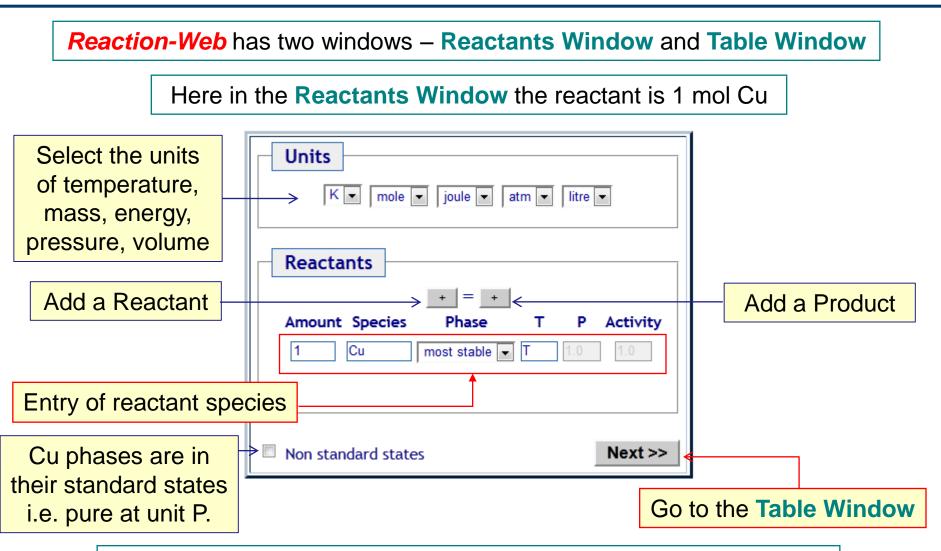
Reaction-WebPlus

Slide show revised: 2012-09-21


Reaction-Web^{Plus} is part of the **Fact-Web** series of internet modules that offer free access to the **factSage**^{**} thermochemical software and databases.

Reaction-Web^{Plus} accesses only compound data stored in **FactPS** – the **fact** pure substances database. It assumes all gases are ideal and ignores expansivities and compressibilities of solids and liquids.

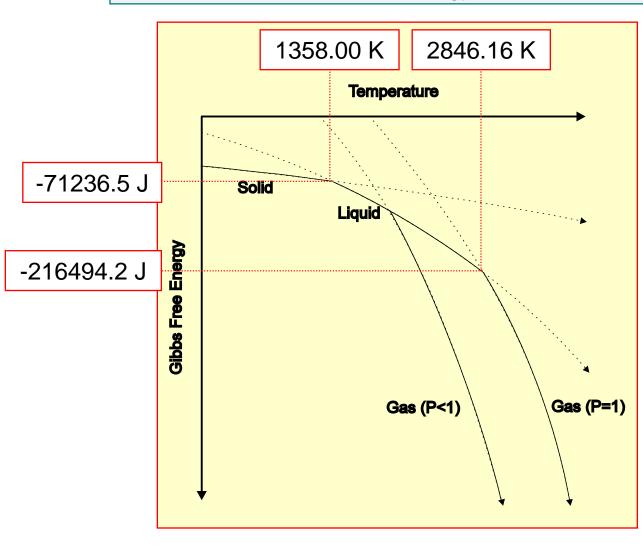
In the *Reaction* module of the full **fact** Sage^{*} package data may also be retrieved from private and other databases. Spreadsheets can be generated and figures plotted that then may be exported into other applications such as Excel. For details visit *www.factsage.com*.

Reactants Window : entry of a pure species -1

Reaction-Web can only access compounds (not solutions). All calculations shown here use the **FactPS** compounds database.

Reaction-Web Plus 1.1

Table Window : thermodynamic properties of a species - 2


	tiple entr nax and	•	- Re 1 Cu (T)		Summary of the Reactants Window				
Т(К)	P(ATM)	Activity X	H (J)	G (J)	Vol (l)	S (J/K)	Ср (Ј/К) Т		
300 3300 500									
Cu(s)					_				
300.00			45.3	-9949.3	7.1240E-03	33.315	24.468		
800.00			13120.4	-33868.0	7.1240E-03	58.736	27.481		
1300.00			27758.9	-66968.6	7.1240E-03	72.867	32.201		
1358.00			29659.9	-71236.5	7.1240E-03	74.298	33.362		
Cu(l)									
Cu(1 mol): DH	= 13138.0 DO	6 = 0 DS	= 9.674						
1358.00			42797.9	-71236.5	7.1240E-03	83.972	32.844		
1800.00			57314.9	-110493.4	7.1240E-03	93.227	32.844		
2300.00			73736.9	-159201.7	7.1240E-03	101.278	32.844		
2800.00			90158.9	-211508.6	7.1240E-03	107.738	32.844		
2846.16			91675.0	-216494.2	7.1240E-03	-03 108.275	32.844		
Cu(g)							· · · · ·		
Cu(1 mol): DH	= 300653.1 D	G = 0 D	5 = 105.635						
2846.16			392328.1	-216494.2	2.3355E+02	213.910	24.400		
3300.00			403914.1	-314439.8	2.7079E+02	217.683	26.675		
he table als	0		<<	Back -			Clear		
display trans	sitions				Return to	o the Rea	ctants Win		

Reaction-Web Plus 1.2

Most stable phase : Gibbs energy minimization - 3

Phase with **lowest** Gibbs energy is the **most** stable.

Points on the solid lines for P = 1 atm are given in column «T» and «G» of the previous Table Window for copper.

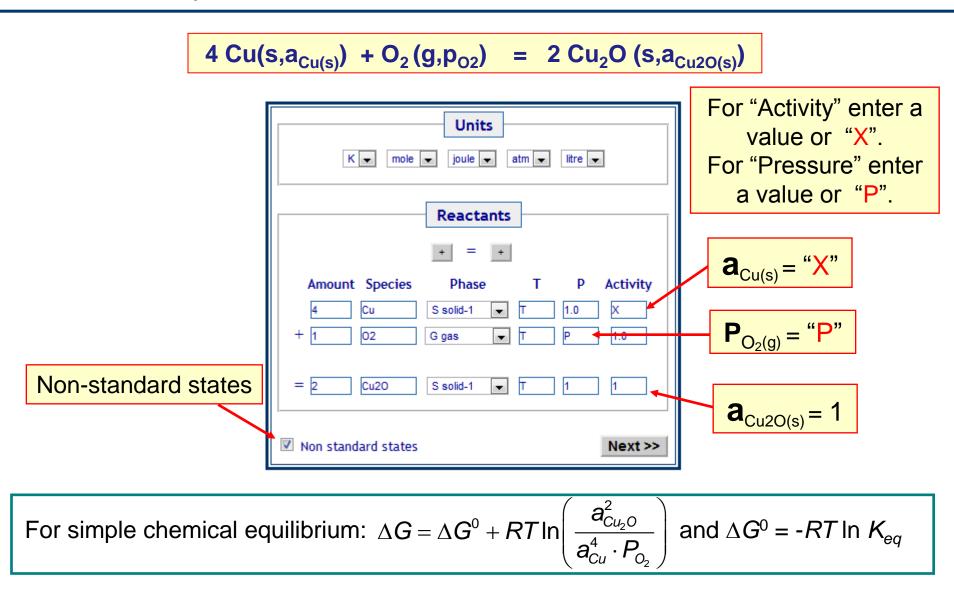
Reaction-Web Plus 1.3

Isothermal standard state reaction : oxidation of copper - 1

Entry of an isothermal standard state reaction: $4 Cu + O_2 = 2 Cu_2O$ Units K 🚽 joule 🔻 mole 💌 atm 💌 litre 💌 Reactants Add product Cu2O Add reactant O2 Phase Activity Amount Species Р Cu most stable 02 1 most stable +Isothermal "T" throughout 2 Cu2O most stable 💌 = Non standard states Next >> Non-standard states Go to the Table window checkbox is not selected

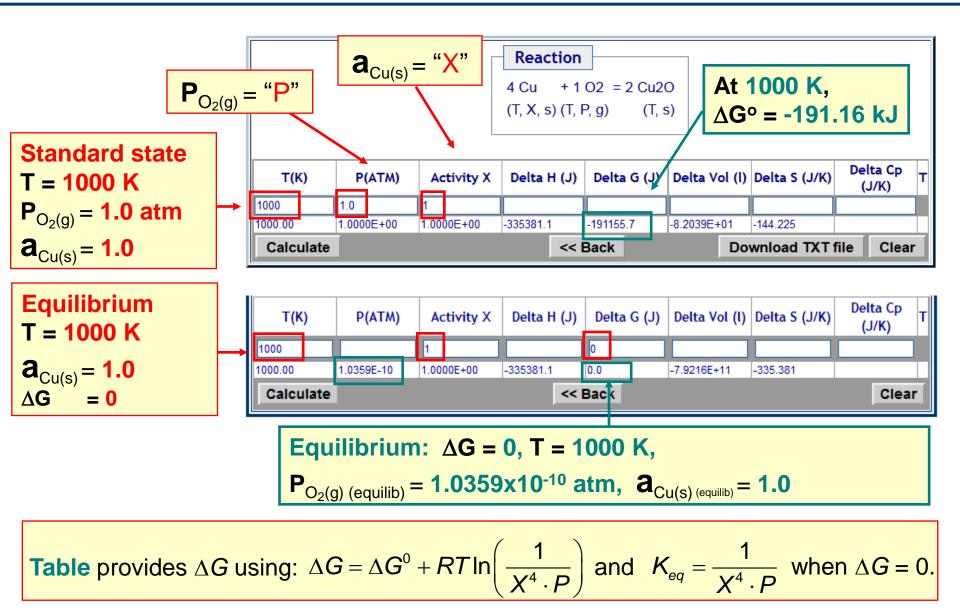
Reaction-Web Plus 2.1

JactSage[™]

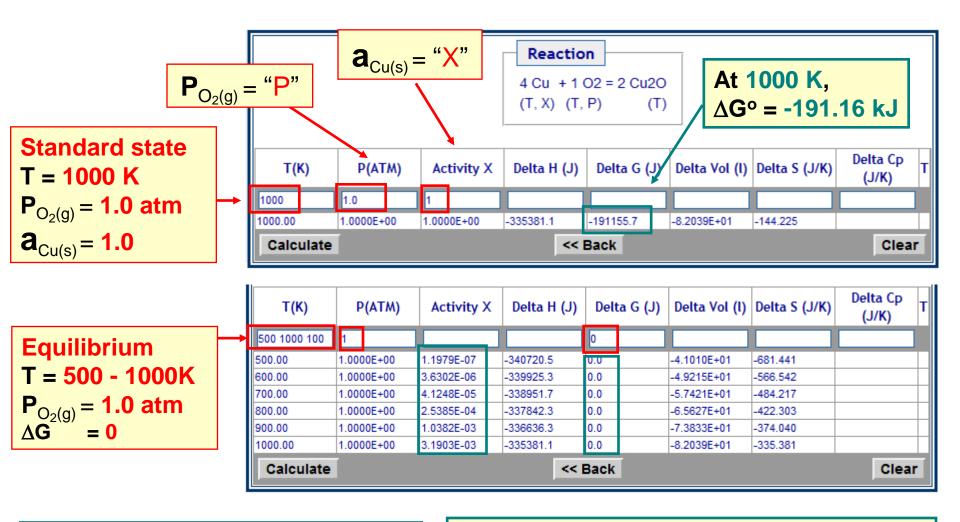

Oxidation of copper at various temperatures - 2

: T _{min} = ; : 2000K		300K.		u + 1 O2 = 2 (T) (T)	Cu2O (T)			
Т(Қ	P(ATM)	Activity X	Delta H (J)	Delta G (J)	Delta Vol (I)	Delta S (J/K)	Delta Cp (J/K)	Keq
300 2000 300								
Cu(s) 0.	(g) Cu2O(s)							
300.00	-(5)(-)		-341417.7	-295521.9	-2.4598E+01	-152.986	-1.922	2.8421E+51
600.00			-339925.3	-249958.6	-4.9215E+01	-149.945	8.923	5.7581E+21
900.00			-336636.3	-205643.5	-7.3833E+01	-145.548	12.414	8.6087E+11
1200.00			-332624.3	-162561.9	-9.8450E+01	-141.719	14.604	1.1911E+07
1358.00			-330450.9	-140311.2	-1.1142E+02	-140.015	12.551	2.4937E+05
Cu(l) O2	(g) Cu2O(s)							
Cu(1 mol): DH	l° = 13138.0 D	G° = 0 [)S° = 9.675					
1358.00			-383002.9	-140311.2	-1.1142E+02	-178.713	14.623	2.4937E+05
1500.00			-380261.0	-115060.9	-1.2307E+02	-176.800	24.076	1.0155E+04
1516.70			-379849.5	-112110.6	-1.2444E+02	-176.527	25.211	7.2003E+03
Cu(l) O2	(g) Cu2O(l)							
	107 17		DS° = 42.703	3				
1516.70	0		-250313.5	-112110.6	-1.2444E+02	-91.121	31.880	7.2603E+03
1800.00			-241381.7	-87085.7	-1.4768E+02	-85.720	31.181	3.3659E+02
2000.00			-235193.2	-70274.4	-1.6410E+02	-82.459	30.706	6.8444E+01
Calculate				<< Back				Clear
				<u> </u>				<u> </u>

Reaction-Web Plus 2.2


Chemical equilibrium : isothermal non-standard state oxidation - 1

Reaction-Web Plus 3.1

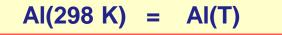

Chemical equilibrium : isothermal non-standard state oxidation - 2

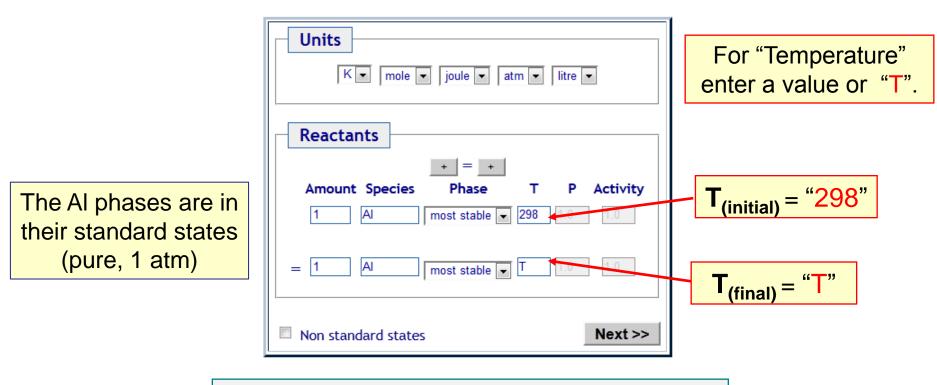
Reaction-Web Plus 3.2

Chemical equilibrium : isothermal non standard state oxidation - 3

Two requirements for equilibrium: $\Delta G = 0$ and Isothermal Reaction

Equilibrium: $\Delta G = 0, T = 500 - 1000 K$,

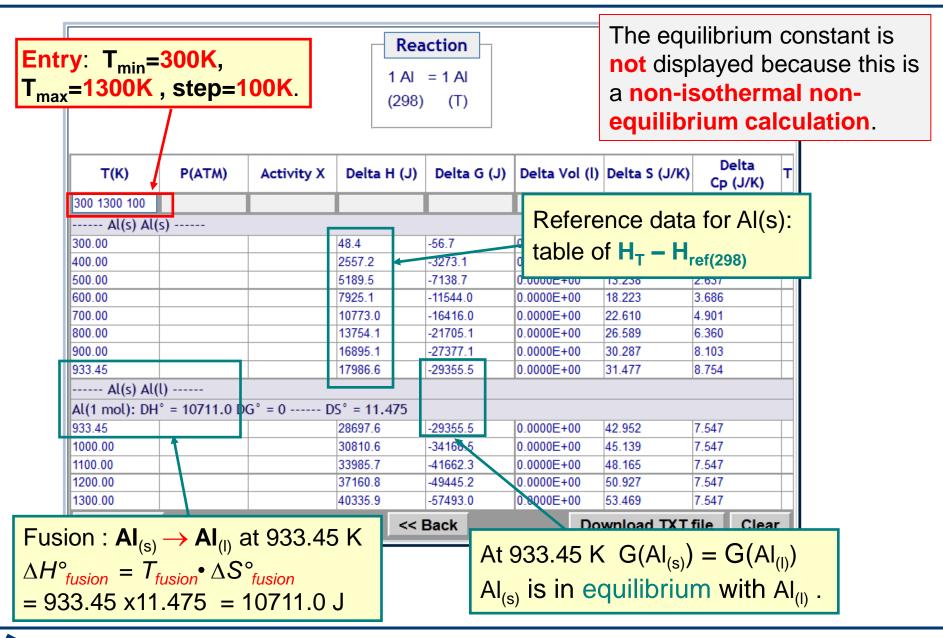

 $P_{O_2(g) \text{ (equilib)}} = 1 \text{ atm, } a_{Cu(s) \text{ (equilib)}} = calculated$



Reaction-Web Plus 3.3

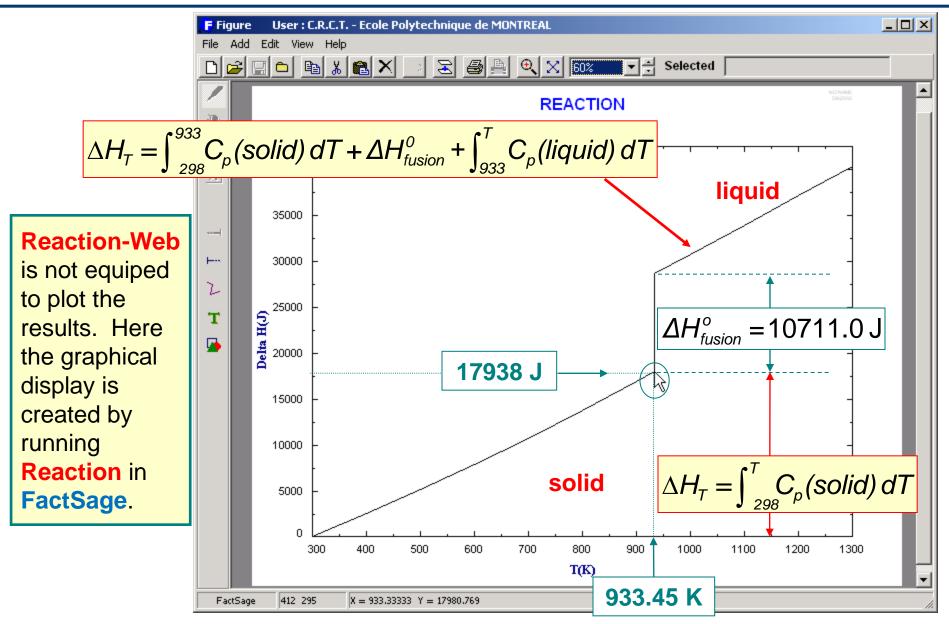
Heating AI from 298 K to the temperature T - 1

Here in the **Reactants Window** the reactant is 1 mol Al at 298 K and the product is 1 mol Al at temperature "T"



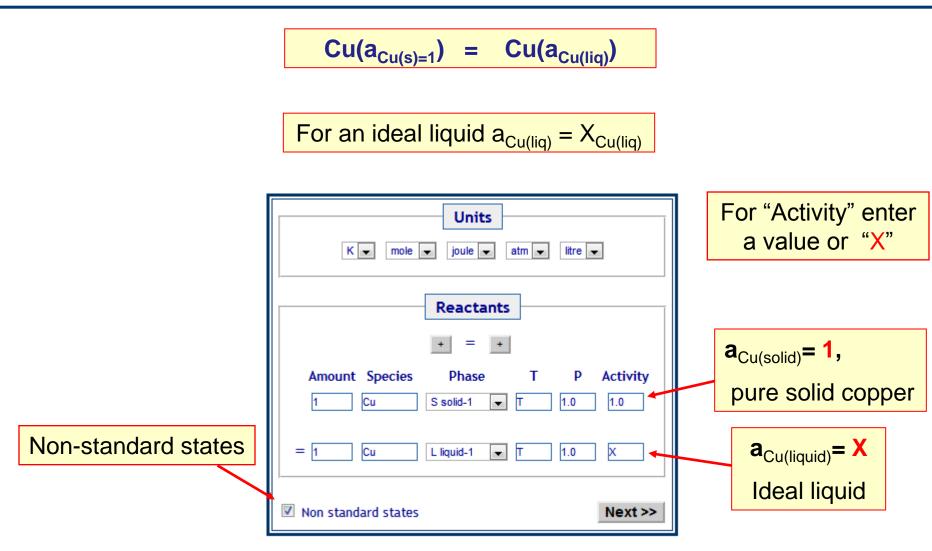
Reaction-Web accesses the AI phases stored in the FactPS compounds database.

Reaction-Web Plus 4.1

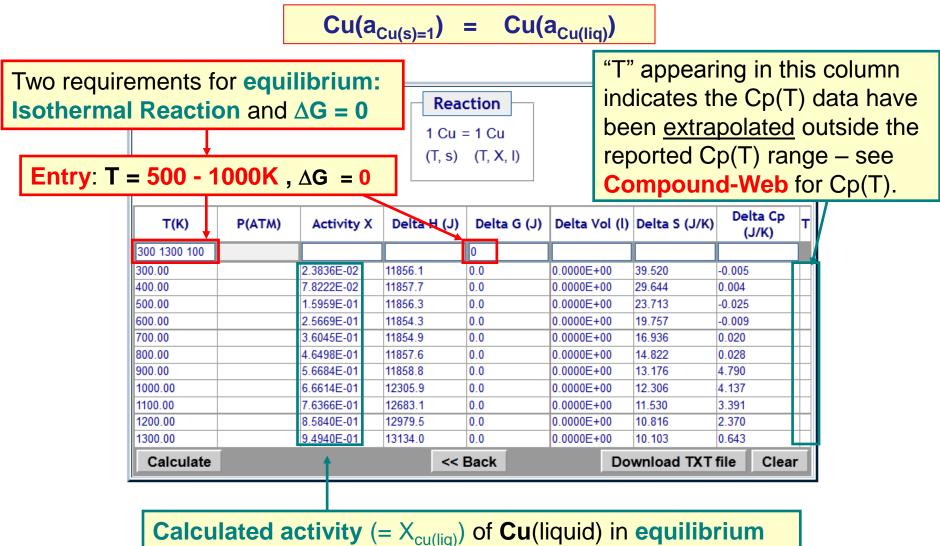

Heating AI from 298 K to the temperature T - 2

Reaction-Web Plus 4.2

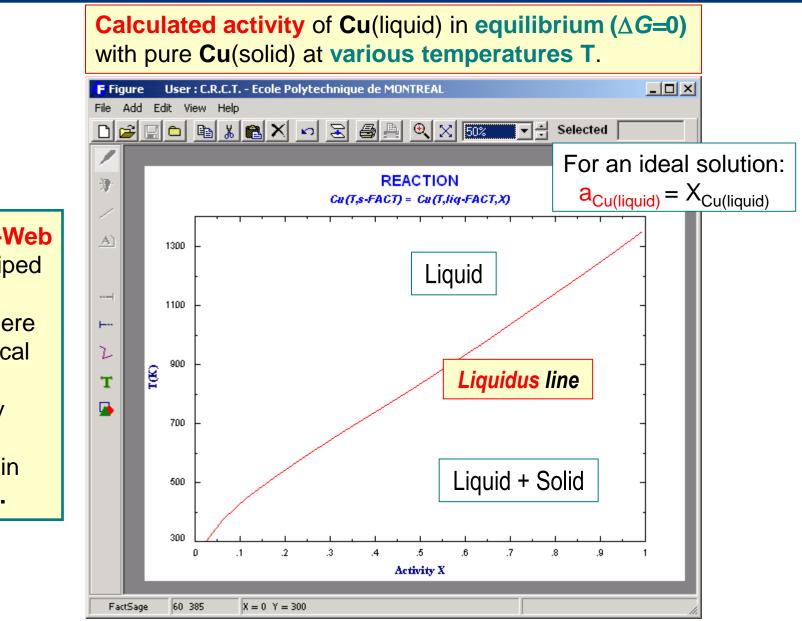
JactSage[™]


Heating AI : FactSage graphical display - 3

Reaction-Web Plus 4.3

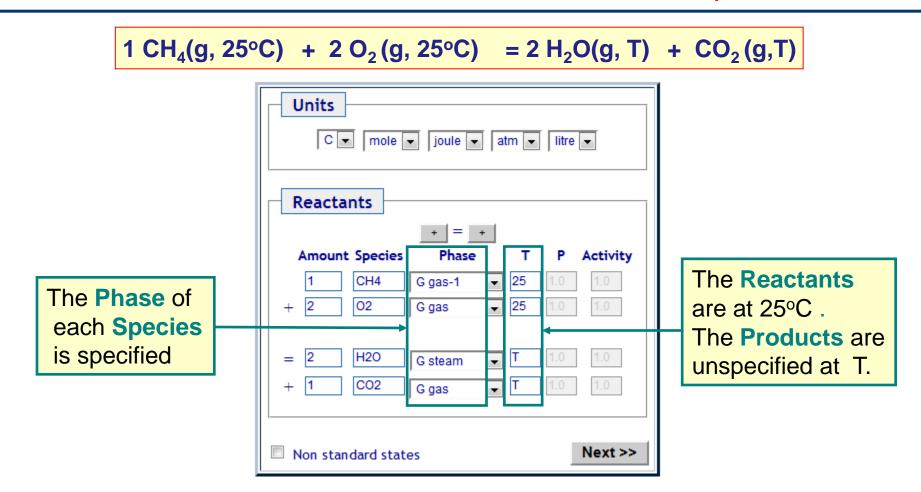

Computation of Cu liquidus in an ideal binary system - 1

Reaction-Web Plus 5.1


Computation of Cu liquidus in an ideal binary system - 2

($\Delta G=0$) with pure Cu(solid) at various temperatures T.

Computation of Cu liquidus : FactSage graphical output - 3

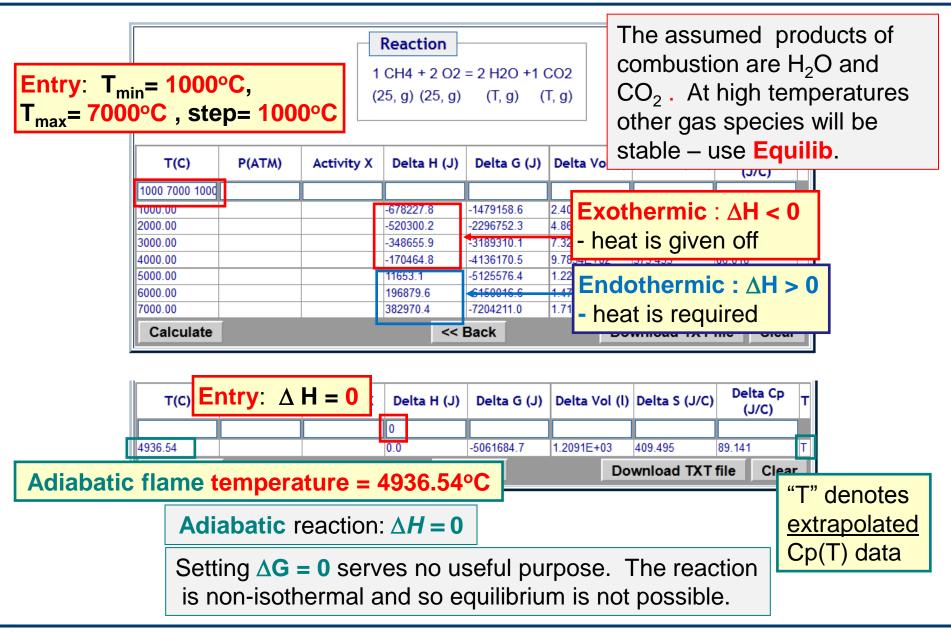


Reaction-Web is not equiped to plot the results. Here the graphical display is created by running Reaction in FactSage.

JactSage[™]

Reaction-Web Plus 5.3

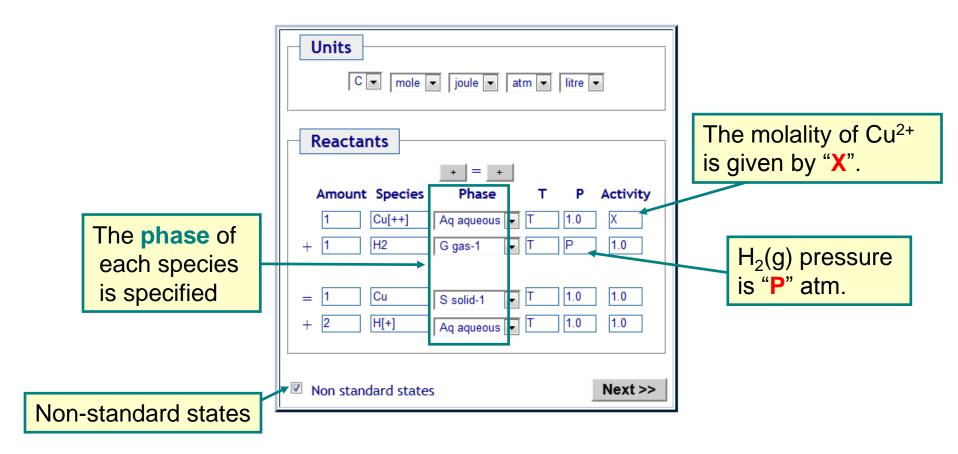
Adiabatic reaction : combustion of CH₄ - 1


The reaction is **non-isothermal** (except when T = 25°C). Hence K_{eq} will not appear as a column in the **Table Window**

This a simple combustion reaction with H_2O and CO_2 products. At high T other species may be more stable.

Reaction-Web Plus 6.1

Adiabatic reaction : combustion of CH₄ - 2



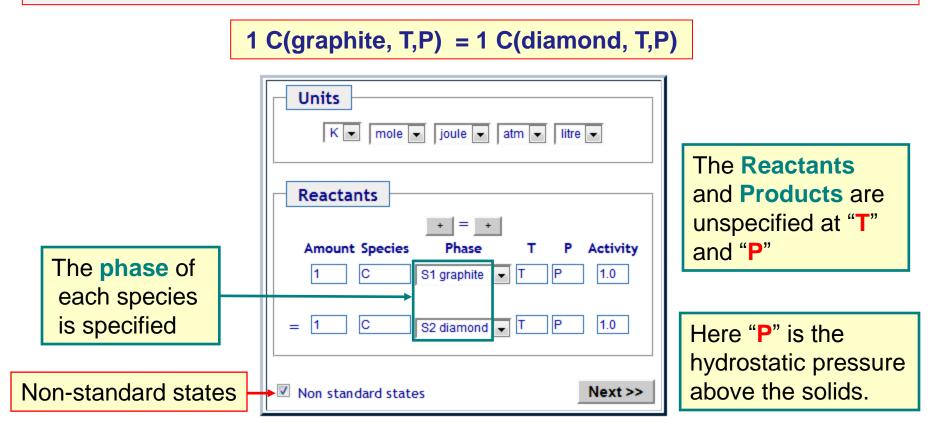
Reaction-Web Plus 6.2

Aqueous applications : H₂ reduction of aqueous Cu ion - 1

 $1 Cu[++](aq, m_{Cu++}, T) + 1 H_2(g, P_{H_2}, T) = 1 Cu(s, T) + 2 H[+](aq, T)$

Reaction-Web Plus 7.1

Aqueous applications : H₂ reduction of aqueous Cu ion - 2


Entry: T= 25°C, P= 1 atm $m_{Cu[++]} = 0.2 - 1$, step= 0.2 T(C) P(ATM) Activity X Delta H (J) E(v) = -DG/2F or 25 01 10000E+00 2000E-01 64852 0 0.3787 2.4 EMF of Cu/Cu[++] electrode at 25° 25 00 10000E+00 4000E-01 64852 0 0.3297 2.4 25 00 10000E+00 4000E-01 64852 0 0.3297 2.4 EMF of Cu/Cu[++] electrode at 25° 25 00 10000E+00 4000E-01 64852 0 0.3297 2.4 E=- Δ G/nF, F (= 96485 C/mol) is the Faraday constants mtry: T= 25°C, = 0.2 - 1 atm, DG = 0 25 00 2 1000E-01 64852 0 0.0000 - 112322E+02 217.515 - 0000 $25 00 2 1000E-01 64852 0 0.0000 - 11232E+02 217.515 - 0000 - 11232E+02 217.515 - 00000 - 00000 - 00000 - 0000 - 0000 - 0000 - 0000 - 00000 - $				F	Reaction					
T(C) P(ATM) Activity X Delta H (J) E(v) = -DG/2F Deta Vol (U) Delta S (J/C) Delta T (J/C)				m (T						
$E = -\Delta G/nF, F (= 96485 C/mol) is the Faraday constants of the formula of the f$					Delta H (J)	E(v) = -DG/2F	De			
$\frac{25.00}{25.00} \frac{1.0000E+00}{1.0000E+00} \frac{4.0000E-01}{6.0000E-01} \frac{-64852.0}{-64852.0} \frac{0.3277}{0.3329} \frac{-2.4}{2.4458E+01} \frac{2.075}{2.075}$ $\frac{25.00}{2.5.00} \frac{1.0000E+00}{1.0000E+00} \frac{1.64852.0}{6.4852.0} \frac{0.3366}{0.3394} \frac{-2.4458E+01}{2.173} \frac{0.317}{0.317}$ $\frac{25.00}{2.5.00} \frac{1.0000E+00}{1.0000E+00} \frac{1.0000E+00}{6.4852.0} \frac{-64852.0}{0.3394} \frac{0.3394}{-2.4458E+01} \frac{2.173}{2.173}$ $\frac{1.000E+00}{2.5.00} \frac{1.0000E+00}{1.0000E+00} \frac{1.0000E+00}{6.4852.0} \frac{-64852.0}{0.3394} \frac{0.3394}{-2.4458E+01} \frac{2.173}{2.173}$		25	1	0.2 1 0.2				-		
$\frac{25.00}{25.00} \frac{1.0000E+00}{1.0000E+00} \frac{4.0000E-01}{6.0000E-01} \frac{-64852.0}{-64852.0} \frac{0.3277}{0.3329} \frac{2.24}{2.4458E+01} \frac{2.075}{2.075}$ $\frac{2.00}{25.00} \frac{1.0000E+00}{1.0000E+00} \frac{1.64852.0}{-64852.0} \frac{0.3329}{0.3366} \frac{-2.4458E+01}{2.173} \frac{0.317}{0.0317}$ $\frac{2.100}{2.5.00} \frac{1.0000E+00}{1.0000E+00} \frac{1.0000E+00}{-64852.0} \frac{-64852.0}{0.3394} \frac{0.3394}{-2.4458E+01} \frac{2.173}{2.173}$ $E=-\Delta G/nF, F (= 96485 C/mol) \text{ is the Faraday constants}$ $\frac{1000E+00}{25.00} \frac{1.000E+00}{25.00} 1.000E$		25.00	1.0000E+00	2.0000E-01	-64852.0	0.3188	-2.4 H_/	H[+] elec	ctrode at 2	25° C
$\frac{25.00}{1.000E+00} = \frac{1.000E+00}{1.0000E+00} = \frac{64852.0}{64852.0} = \frac{0.3366}{0.3394} = \frac{2.4458E+01}{2.4458E+01} = \frac{0.317}{2.173}$ $E=-\Delta G/nF, F (= 96485 C/mol) \text{ is the Faraday constants}$ $\frac{1000E+00}{1.000E+00} = \frac{1000E+00}{1.000E+00} = \frac{1000E+00}{64852.0} = \frac{1000E+00}{1.000E+00} =$		25.00	1.0000E+00	4.0000E-01	-64852.0	0.3277	-2.4 2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		25.00	1.0000E+00	6.0000E-01	-64852.0	0.3329	-2.4458E+01	-2.075		
Calculate E=- Δ G/nF, F (= 96485 C/mol) is the Faraday constant otry: T= 25°C, Constant Constant Constant Constant 0.2 - 1 atm, DG = 0 TM Activity X Delta H (J) E(v) = -DG/2F Delta Vol (I) Delta S (J/C) Delta C (J/C) T 25 0.2 1 0.2 0<		25.00	1.0000E+00	8.0000E-01	-64852.0	0.3366	-2.4458E+01	0.317		
$E=-\Delta G/nF, F (= 96485 \text{ C/mol}) \text{ is the Faraday constants} \\ E=-\Delta G/nF, F (= 96485 \text{ C/mol}) \text{ is the Faraday constants} \\ E=-\Delta G/nF, F (= 96485 \text{ C/mol}) \text{ is the Faraday constants} \\ e 0.2 - 1 \text{ atm, DG} = 0 \\ \hline TM) Activity X Delta H (J) E(v) = -DG/2F Delta Vol (I) Delta S (J/C) Delta C_p (J/C) \\ \hline 25.00 & 2.0000E-01 & 6748E-1 & 64852.0 & 0.0000 & -1.2232E+02 & -217.515 \\ \hline 25.00 & 4.0000E-01 & 63742E-12 & -64852.0 & 0.0000 & -6.1157E+01 & -217.515 \\ \hline 25.00 & 6.0000E-01 & 65828E-12 & -64852.0 & 0.0000 & -4.0769E+01 & -217.515 \\ \hline 25.00 & 8.0000E-01 & 4.1871E-12 & -64852.0 & 0.0000 & -3.0575E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & 3.497E-12 & -64852.0 & 0.0000 & -2.4458E+01 & -217.515 \\ \hline 25.00 & 1.000E+00 & -2.4458E+01 & -217.515 \\ \hline 25.00 & -2.4458E+01 & -$		25.00	1.0000E+00	1.0000E+00	-64852.0	0.3394	-2.4458E+01	2.173		
25 0.2 1 0 0 0 25.00 2.0000E-01 1.6748E-11 -64852.0 0.0000 -1.2232E+02 -217.515 1 25.00 4.0000E-01 8.3742E-12 -64852.0 0.0000 -6.1157E+01 -217.515 1 25.00 6.0000E-01 5.5828E-12 -64852.0 0.0000 -4.0769E+01 -217.515 1 25.00 8.0000E-01 4.1871E-12 -64852.0 0.0000 -3.0575E+01 -217.515 1 25.00 1.0000E+00 3.3497E-12 -64852.0 0.0000 -2.4458E+01 -217.515 1	ntry: T= 2	25°C,	<u> </u>							
25.00 2.0000E-01 1.6748E-11 -64852.0 0.0000 -1.2232E+02 -217.515 25.00 4.0000E-01 8.3742E-12 -64852.0 0.0000 -6.1157E+01 -217.515 25.00 6.0000E-01 £.5828E-12 -64852.0 0.0000 -4.0769E+01 -217.515 25.00 8.0000E-01 4.1871E-12 -64852.0 0.0000 -3.0575E+01 -217.515 25.00 1.0000E+00 3.3497E-12 -64852.0 0.0000 -2.4458E+01 -217.515	= 0.2 - 1 a	tm, DG	= 0 тм)	Activity X	Delta H (J)	E(v) = -DG/2F	Delta Vol (l)	Delta S (J/C)		
25.00 4.0000E-01 8.3742E-12 -64852.0 0.0000 -6.1157E+01 -217.515 25.00 6.0000E-01 5.5828E-12 -64852.0 0.0000 -4.0769E+01 -217.515 25.00 8.0000E-01 4.1871E-12 -64852.0 0.0000 -3.0575E+01 -217.515 25.00 1.0000E+00 3.3497E-12 -64852.0 0.0000 -2.4458E+01 -217.515		25	0.2 1 0.2			0				
25.00 6.0000E-01 £ 5828E-12 -64852.0 0.0000 -4.0769E+01 -217.515		25.00	2.0000E-01	1.6748E-11	-64852.0	0.0000	-1.2232E+02	-217.515		
25.00 8.0000E-01 4.1871E-12 -64852.0 0.0000 -3.0575E+01 -217.515 25.00 1.0000E+00 3.3497E-12 -64852.0 0.0000 -2.4458E+01 -217.515		25.00	4.0000E-01	8.3742E-12	-64852.0	0.0000	-6.1157E+01	-217.515		
25.00 1.0000E+00 3.3497E-12 -64852.0 0.0000 -2.4458E+01 -217.515		25.00	6.0000E-01	5.5828E-12	-64852.0	0.0000	-4.0769E+01	-217.515		
		25.00	8.0000E-01	4.1871E-12	-64852.0	0.0000	-3.0575E+01	-217.515		
Calculate << Back Download TXT file Clear		25.00	1.0000E+00	3.3497E-12	-64852.0	0.0000	-2.4458E+01	-217.515		
		Calculate			<<	Back	Do	wnload TXT f	file Clear	

Equilibrium molality $m_{Cu[++]}$ at various P_{H_2}

Effect of high pressure : graphite to diamond transition - 1

Where available, **density** data for solids and liquids are employed in *Reaction* (the "VdP" term) although their effect only becomes significant at high pressures.

The reaction is **isothermal.** Hence **equilibrium** can be calculated by setting $\Delta G = 0$ in the**Table Window**

Reaction-Web Plus 8.1

Effect of high pressure : graphite to diamond transition - 2

	Γ = 1500 0000, st							In Reaction compressibility and expansivity data are				
т(К)	P(ATM)	Activity X	Delta H (J)	Delta G (J)) Delta Vol (l)	Delta S (J/K)	D	NOT employed.				
1500	1e4 9e4 1e4											
1500.00	1.0000E+04	1	-796.6	6231.0	-1.8811E-03	-4.685	-0.2	275				
1500.00	2.0000E+04		-2702.7	4324.9	-1.8811E-03							
1500.00	3.0000E+04		-4608.7	2418.9	-1.8811E-03	At 150) k	K as P increases ∆G becc	mes			
1500.00	4.0000E+04		-6514.7	512.8	-1.8811E-03	moron	00	gative and the transition o	F			
1500.00	5.0000E+04		-8420.8	-1393.2	-1.8811E-03	moren	сŶ	yalive and the transition of	l			
1500.00	6.0000E+04		-10326.8	-3299.2	-1.8811E-03	graphite to diamond becomes						
1500.00	7.0000E+04		-12232.9	-5205.3	-1.8811E-03	S						
1500.00	8.0000E+04		-14138.9	-7111.3	-1.8811E-03	thermodynamically more favorable.						
1500.00	9.0000E+04		-16044.9	-9017.3	-1.8811E-03	-4.685	-0.2	275				
Calculate << Back Download TXT file Clear												
т(к)	P(ATM)	Activity X	Delta H (J	I) Delta G (J	J) Delta Vol (l)	Delta S (J/K)		Delta Cp (J/K) T				
1500 1500.00	4.2691E+04		-7027.6	0.0	-1.8811E-03			K and 42691 atm, graphi nond are at equilibrium (Δ				
Calcula				< Back				Clear				

The volume of diamond is smaller than graphite. Hence, at high P, the "VdP" term creates a favorable negative contribution to the enthalpy change.

