The quadratic formalism of Darken ¹⁶ proposes that in general $g_1^{\rm E}=aX_2^2$ and $g_2^{\rm E}=aX_1^2+{\rm const.}$ for solutions rich in component 1, with analogous behaviour at the other terminal region. Clearly the AgCl+Ag₂S melts fit the Darken description, with $S_i^{\rm E}$ exhibiting similar behaviour to $g_i^{\rm E}$, as shown in fig. 4. The structural interpretation of the quadratic formalism is that in the AgCl-rich solutions the Fig. 2.—AgCl+AgS phase diagram 1 plus the theoretical "one foreign particle" limiting slopes calculated from the new $\Delta H_{\rm f}$ value 12 (see text). Table 2.—Thermodynamic data for AgCl+Ag2S mixtures | 10-2 XAE25 | | $g_i^{ m E}$ on liquidus | Δh_i | $S_{\epsilon}^{\mathbf{E}} = \Delta h - g_{\epsilon}^{\mathbf{E}} - T_{\mathbf{H}\mathbf{u}}$ | $(g_t^{ m F})$ 800
from Δh_t $ 800$ $S_t^{ m F}$ | |--------------|------------|--------------------------|------------------------|---|---| | % | Thousand 1 | /J.mol-1 3 | /J mol ^{-1 3} | J K ⁻¹ mol ⁻¹ | /J mol ⁻¹ | | 0.0 | 726 | 0 | 0 | 0 | 0) | | 0.1 | 696 | 63 | 55 | -0.02 | 54 | | 0.2 | 672 | 264 | 200 | -0.09 | $276 \mid i = AgCl$ | | 0.3 | 658 | 711 | 404 | -0.46 | 774 | | (0.4) | 647 | 1305 | 639 | -1.05 | 1477) | | extrapolated | | | | | | | (0.3) | 623 | 2594 | 1046 | -2.47 | 3021) | | extrapolated | | | | | | | 0.4 | 681 | 1987 | 602 | -2.05 | 2243 | | 0.5 | 773 | 1950 | 310 | -2.13 | 2017 | | 0.6 | 837 | 1536 | 130 | - 1.67 | $1469 \mid i = Ag_2S$ | | 0.7 | 869 | 908 | 38 | -1.00 | 841 | | 0.8 | 921 | 410 | O. | -0.46 | 368 | | 0.9 | 984 | 13 | Ò | 0:00 | 0 | | 1.0 | 1103 | .0 | 0 | 0 | 0) | structure of AgCl is maintained, while in Ag₂S-rich solutions the structure of Ag₂S is maintained. There is a narrow transition region between $X_{\rm AgCl} = 50$ % and $X_{\rm AgCl} = 60$ % in which the structure changes. The extreme narrowness of this transition region in this system is particularly noteworthy. The negative values of $S_i^{\rm E}$ indicate an ordered structure. Fig. 3.— $g^{\rm E}$ for AgCl+Ag₂S mixtures at 800 K showing terminal regions where $g_{\rm AgCl}^{\rm E} = 9100~X_{\rm Ag2S}^2~{\rm J~mol^{-1}}$ [curve (a), $g_{\rm Ag_2S}^{\rm E} = 9260~X_{\rm AgCl}^2~{\rm J~mol^{-1}}$ [curve (b)] and $g_{\rm Ag_2S}^{\rm E} = 9100~X_{\rm AgCl}^2~{\rm -1033~J~mol^{-1}}$ [curve (c), calculated from Gibbs-Duhem relation and curve (a)]. The transition region is dotted. ## THALLOUS CHLORIDE+THALLOUS SULPHIDE MIXTURES The limiting one foreign particle liquidi (fig. 1) agree with the experimental data in the dilute solution limit, as was found for the silver salts (fig. 2). In both systems, in infinitely dilute solution, each M_2S (M=Ag or Tl) species adds one foreign particle to the chloride solvent (e.g. S^{2-} ion, M_2S molecule . . .) and vice versa for the sulphide limit. This behaviour contrasts with that of Cu_2S in CuCl melts, where (Cu_2S) dimers are indicated, ⁶ and with Bell and Flengas' earlier analysis, ¹ in which they found two foreign particles for dilute solutions of AgCl in Ag_2S calculated from their limiting slopes using the older ΔH_f values. It seems reasonable to assume that, in the sulphide solvents, the chlorides are dissociated. Hence, the foreign particle in the sulphide solvents is the Cl⁻ ion. It then follows that the Tl⁺ (or Ag⁺) cations are incorporated into the Tl₂S (or Ag₂S) structures, and are not "foreign".