The Polynomial Representation of Thermodynamic Properties

in Dilute Solutions

ARTHUR D. PELTON

Attempts to extend the interaction parameter formalism to higher-order polynomials and to render it
thermodynamically consistent at finite solute concentrations have resulted in much confusion. The
literature is reviewed with a view to clarifying the issues. The problem is best and most simply
resolved through extension of the quadratic formalism, which has a sound theoretical foundation. A
new and general set of equations for estimating higher-order parameters from binary parameters is
derived. The applicability of using molar ratios rather than mole fractions in the polynomial expan-
sions is discussed. The formation of associate species (such as the formation of ‘“AlQ”’ associates
in molten Fe) is treated. In such cases of strong solute-solute interactions, the usual practice of
expressing the interaction parameters as linear functions of (1/7T) is invalid. Finally, for more con-
centrated solutions, the advantage of using the Kohler or Toop interpolation models rather than the

commonly used Muggianu model is shown.

I. INTRODUCTION

THE well-known first-order interaction parameter for-
malism of Wagner™™ for a dilute solution of components
1-2-3 ... -N, where component 1 is the solvent, may be
written as

ny=hy+e,X,+e, X5+ . . +e, X022 [1]
where v, is the activity coefficient of solute i defined as
Y = a,/X, [2]

where g, is the activity of i and X; is the mole fraction of i
defined as

X, =n/(n, + n, + ...+ ny) 31

1

where #; is the number of moles of i in solution. The ac-
tivity coefficient at infinite dilution (where X; — 1) is de-
noted by y?. The parameters &; are called *‘first-order
interaction parameters.”’

From the Gibbs-Duhem equation,

YXdny =0 [4]
it can be shown that in the limit at infinite dilution,
;= & [5]

and

ey X X [6]
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The Wagner formalism is very simple and useful but has
frequently been misunderstood or misapplied. Much of the
confusion has arisen because Egs. [1] and [6] only obey
the Gibbs—Duhem equation in the limit of infinite dilution,
and because the formalism does not obey the following
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necessary thermodynamic relationship except at infinite di-
lution:

(@ In v,/on;) = (8 In vy;/om,) [7]

This problem was simply resolved many years ago for
the case of the first-order formalism for 2- and 3-component
systems by Darken®* in two articles, which have not re-
ceived sufficient attention.

Darken’s Quadratic Formalism

In a binary system 1-2 (where 1 is the solvent), Darken
proposed a ‘‘quadratic formalism’’:

g/RT = ap X, X, + C, X, [8]
where g” is the excess molar Gibbs energy:
N
o#/RT = Z; X lny, [9]
and where @, and C, are constants. By differentiation,
Iny,=a,Xi+ G [10]
=(ap + C) — 2a, X, + a;, X3
Iny =a,X3 [11]

When C, = 0, the quadratic formalism reduces to the reg-
ular solution equations.

It has been observed that many simple binary solutions
conform quite closely to the quadratic formalism up to rel-
atively large values of X,. This observation can be ration-
alized by a simple regular solution model. Assume a
random distribution of atoms or molecules of components
1 and 2 on a quasilattice. Let E; be the bond energy of one
mole of i~/ nearest-neighbor pairs. The probabilities that a
given pair is a 1-1, a 2-2, or a 1-2 pair are X2, X2, and 2
X, X, respectively. The excess Gibbs energy is then equal
to the sum of the energies of the pair bonds in 1 mole of
solution, less the energy of the 1-1 bonds in X; moles of
pure component 1 and the energy of the 2-2 bonds in 1
mole of pure component 2:
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g =(Z12)2X, X, E, + X3 E, + X3 Ey)
—(Z12) X, E\,~ (Z°12) X, ES, [12]
= (ZI2D)QE,— E,— E,) X, X, + X,

(ZEy,— Z° E)/2
where Z is the coordination number and there are (Z/2) pairs
per mole of solution. It is assumed that Z, E,,, E,,, and E,,
are independent of composition for solutions in which X,
is sufficiently large, and that Z° and EY, are the values in
pure component 2. Equation [12] is then identical to Eq.

[8].
The extension of the quadratic formalism to ternary so-
lutions is obvious:
gE/RT =(an XX + ay X, X, + a;) X X)) [13]
(G X4+ G LX)

and partial properties are given by differentiation:
Iy, = ap X2+ ay X2+ (ap+ a3 — a) X, X, [14]
Iny =(,+ C) —2a,X,— (a,+ a;,— a) X, [15]
+[an X2+ ay X3 + (@n+ a5 — ay) X, X
Invy, = (a,+ C) — 2a, X,— (a,+ a,,— an) X, [16]
+ [a, X3 + ay X3+ (ap+ a; — ay) X, X5]

The extension to N-component systems can be made by
simply adding similar terms.

II. THE UNIFIED INTERACTION PARAMETER
FORMALISM

A unified interaction parameter formalism for the poly-
nomial representation of the thermodynamic properties of
dilute solutions was proposed by Bale and Pelton.*! The
interaction parameter formalism was modified to be consis-
tent with the quadratic formalism, as well as with the
Gibbs—Duhem equation and Eq. {7]. The equations were
generalized for N-component systems and higher-order
terms.

A. First-Order Formalism—Binary Systems

If the following substitutions are made in the binary
quadratic formalism:

In vy} = (a,+ C) [17]
&y = —2ay, [18]
Equations [10] and [11] then become
Iny,=1Invy3+ &y (X, — X3/2) [19]
Iy = ~(%) be [20]

Equation [19] reduces to the Wagner formalism in the limit
as X, — 0, and Eq. [20] is identical to Eq. [6] for a binary
system. Equations [19] and [20] are thus a modified inter-
action parameter formalism that is identical to the quadratic
formalism and reduces to the Wagner formalism at infinite
dilution, but that is consistent with the Gibbs—Duhem Eq.
[4] and with Eq. [7] at finite solute concentrations.

As an example, for Ni-Fe liquid solutions at 1600 °C,
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Fig. 1—Activity coefficients’ of Fe and Ni in liquid Ni-Fe solutions at
1600 °C. Solid lines show agreement with unified interaction parameter
formalism with &z, = 2.7. Dashed lines show agreement with linear
formalism.

where Ni is the solvent (Ni = 1, Fe = 2), activity coeffi-
cients! of Fe and Ni are plotted in Figure 1. It can be seen
that Equations [19] and [20] with &z, = 2.7 provide a very
good representation of both In vy, and In vy, for solute
concentrations up to X, = 0.5. The linear Wagner formal-
ism, on the other hand, does not give a good representation
of the data for In y;, when X, > 0.1.

Suppose, nevertheless, that one wishes to maintain the
Wagner formalism even to finite concentrations:

Iny,=mnvy} + e, X, [21]

' By substituting Eq. [21] into the Gibbs-Duhem Eq. [4], the

following equation is obtained by integration:
Iny, =g,[n(-X)+X] [22]
Hajra et al." propose the use of Egs. [21] and [22].
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From Figure 1, it can be seen that Eq. [22] gives a poor
representation of In +y; at higher solute concentrations, be-
cause Eq. [21] gives a poor representation of (In ¥, — In
1) at higher solute concentrations. Of course, for some
binary systems, the linear Wagner formalism, Eq. [21], may
give a closer fit to the experimental points than the modified
formalism, Eq. [19]. In this case, Eq. [22] for In vy, will be
better than Eq. [21]. However, in general, there is no sound
theoretical foundation for the use of Eqgs. [21] and [22] as
there is for Egs. [19] and [20], which are identical to the
quadratic formalism. If only data for very dilute solutions
are available, then Eqgs. [19] and [20] are more likely to
provide a good extrapolation to higher solute concentra-
tions, although, of course, there will be exceptions.

B. First-Order Formalism-Ternary Systems

Although it is possible to maintain the linear Wagner
formalism, Eq. [21], for a binary system by choosing an
expression for In vy, Eq. [22], consistent with the Gibbs—
Duhem equation, this is no longer possible in the case of a
ternary system, where the Wagner formalism,

Iny,=1Invy]+ &, 5+ ey X, [23]
Iny, =Iny]+ &, X, + &; X% [24]

is inconsistent with the relationship of Eq. [7] no matter
what expression is chosen for In v,. This point appears to
have been missed by Srikanth and Jacob,® who proposed
a complex ‘‘integration path dependent’’ expression for In
v,, based upon Egs. [23] and [24] and consistent with the
Gibbs—Duhem equation. The problem is that consistency
with the Gibbs—Duhem equation is necessary but not suf-
ficient. Equation [7] must also be obeyed.

Hajra et al.”! recognized this requirement and proposed
the following ternary expressions:

—&p)In(l — X)) [25]
hy=hy+Xe,+Xes+ (68p—e)In(l —X) [26]
Iny =g, In(1 —X) teIn(l —X) + X8y 271

(I -X)1 —X)
1-X-X)

Iny,=hvy+ X8, + X85+ (55

+ X85 ~&yln

Equations [25] through [27], while thermodynamically con-
sistent with Eqs. [4] and [7], do not preserve the simple
form of the original Wagner Eq. [1]. Furthermore, they are
not based upon a theoretical model as is the quadratic for-
malism. Of course, for certain composition regions in cer-
tain systems, Eqgs. [25] through [27] may provide a
reasonable representation of the data. This is the case in
Ni-Fe-Cr liquid alloys when Ni is the solvent, mainly be-
cause binary solutions of Cr in liquid Ni are better
represented by Eqs. [21] and [22] than by Eqgs. [19] and
[20] (although neither set of equations is satisfactory; a sec-
ond-order parameter is required). Based upon this one ex-
ample, Hajra et al. concluded that Egs. [25] through [27]
are superior to the quadratic formalism. This conclusion is
not justified.

For ternary systems, it is simpler, and more theoretically
justifiable, to use the quadratic formalism of Egs. [14] and
[16]. With the following substitutions in Eqgs. [14] through
[16],
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i=23 [28]
=23 [29]

In ¥ = (a; + C)
&

&y = —(a, + a5 — ay) [30]

the following equations of the unified interaction parameter
formalismi*! result:

= —2ay

In % = -(%%X% 2 eXX) [31]

Iny,=Invy]+ e, X, + &5 X [32]

- (-8—22-2-)@ + 523—3)@ + 823)(2)(3)
=Inyl+e, X, + e, X5 + (ny)
Similarly,
ny,=Iny)+e, X +e&;5 +(ny) [33]

where (In vy,) in Egs. [32] and [33] is given by Eq. [31]
and &; = &,.

Equations [32] and [33] are identical to Wagner’s for-
malism, Eq. [1], in the limit of infinite dilution (where the
In 7y, term becomes vanishingly small relative to the other
terms), and the parameters &,,, &3, and &,; are identical to
those of the Wagner formalism. However, Egs. [31]
through [33] are consistent with the Gibbs-Duhem Eq. [4]
and with Eq. [7].

Equation [31] for In v, is identical to Eq. [6]. Because
Egs. [1] and [6] are thermodynamically consistent only at
infinite dilution, Srikanth and Jacob™ incorrectly concluded
that the same is true of Egs. [31] through [33]. In fact, Egs.
[31] through [33] are thermodynamically consistent at all
compositions.

Approximation for €,,

If &, and &, have been determined from measurements
in the 1-2 and 1-3 binary systems, and one wishes to esti-
mate the properties of the ternary solutions, then, as a first
approximation, one might assume that 2-3 interactions are
negligible. Because &,; is an ‘‘interaction parameter,”” one
might then propose setting &,; = 0. However, it is clear
from Eqgs. [8] and [12] that it is a,; that should be set to
zero. From Eqs. [29] and [30], then, it follows that a better
first approximation to &, is

£y = (8 + £33)/2 [34]

Clearly, Eq. [34] should only be used if, in fact, 2-3 inter-
actions can be reasonably assumed to be small as, for ex-
ample, in a case of two metallic solutes in a metallic

_solvent. For a case of a metallic and a nonmetallic solute

in a metallic solvent (e.g., Al and O in Fe), the interactions
are likely to be strong, and Eq. [34] should not be used.

C. General Unified Formalism—N Components, Higher-
Order Terms

The unified formalism has been generalized as fol-
lows: 45
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Fig. 2—Three geometric models for estimating thermodynamic properties
of ternary solutions from binary data.

N
= 9 X e X
In 7:‘ h’l ’)/l + J; 81] Xl + j,;z Stjk )(J Xvk [35]
N

+ ey X X X +..+ (Iny) (=2)

=2

where (In v,) for the solvent is given by

1 v 7 &
Iny = - 517«:27,2 & X X, — 5,;;;:'2 & X X, X, [36]
3
B Zj,cgﬂ Erm X X X, X, — .

where the parameters g, &, &, ... may be called first-
order, second-order, third-order, efc. interaction parameters.

Equations [35] and [36] may be shown to satisfy the
relationship of Eq. [7]. By substituting Eqgs. [35] and [36]
into Eq. [4] and collecting like terms, it may be shown that
the Gibbs—Duhem equation is satisfied and, furthermore,
that a very simple relationship exists among the higher-

order parameters, namely,

Cijr T Biy T &k T iy T &y < &y [37]
Cijrt = i T Sy =
That is, the order of the subscripts is immaterial just as in
Eq. [5] for the first-order parameters. Equation [37] also
holds when two or more subscripts are identical. For ex-
ample,
Eyj T & T &y [38]
Note in Egs. [35] and [36] that the summations are over all
values of all indices. For example, the sum X £,X.X,X, con-
tains terms £,,,X,X0X; + £,XXX, + £,X5X.X, + ... for
all possible permutations. These terms are all equal by vir-
tue of Eq. [37].

Srikanth and Jacob!®! stated that Egs. [35] and [36] are
thermodynamically consistent only at infinite dilution. This
is incorrect. Equations [4] and [7] are satisfied at all con-
centrations.

Although it was not given by Bale and Pelton, the fol-
lowing simple expression for the integral excess Gibbs en-
+ ergy (Eq. [9]) may be written by substituting Eqs. [35] and
[36] into Eq. [9]:

N
1
/RT = ), X, In 70 + -
& =2 3139

where, again, the summations are over all combinations of
the indices.
As an alternative derivation of the unified formalism, one
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can start with Eq. [39], which is a general polynomial ex-
pansion, and then obtain Eqs. [35] and [36] by differenti-
ation. This demonstrates the thermodynamic consistency of
Egs. [35] and [36].

Higher-order terms were added to the Wagner formalism
by Lupis and Elliot,”! whose equations were similar to Eq.
[35] except that the (In ;) term was not included; therefore,
Egs. [4] and [7] were not satisfied. These authors used a
somewhat different notation. For example, &,, was given the
symbol p]. The second-order formalism of Lupis and Elliott
for a binary system is as follows:

Iny, =Iny)+e,X + p3 X3 [40]

In many compilations of interaction parameters,/’>!!l one
finds that p3 is often either equal to, or approximately equal
to, (—&,/2). By comparing Eq. [40] with Eq. [19], it is
apparent why this should be so. That is, there is really only
one parameter &, and the quadratic formalism applies.

Approximations for higher-order cross-interaction
parameters

It was shown previously that the first-order ‘‘cross’’-in-
teraction parameter €; can be estimated, to a first approxi-
mation, from the binary ‘‘self’’-interaction parameters &,
and g; by Eq. {34]. The question now arises as to how
higher-order cross parameters &, = should be estimated
from binary self parameters ¢, . There is no unique answer
to this question, although all estimation techniques should -
give similar results. Let us first consider some of the tech-
niques commonly employed to estimate thermodynamic
properties of ternary and multicomponent solutions from
binary data and then apply these to this problem.

For a temary system, Eq. [13] is given by the quadratic
formalism when the «, parameters are constant. In general,
the c; parameters are not constant but can be expanded in
each binary system as polynomials:

a; = °q; + 'q, X, + g, X3 +... [41]
or, equivalently,
a; = Ly + 'Ly (X, — X) + 2L, (X, — X* +... [42]

where the constant coefficients "g, and "L, are obtained
empirically by fitting binary thermodynamic data. In order
now to use Eq. [13] to estimate ternary properties, a pro-
cedure is required to relate a; at a given ternary composi-
tion to its value at some composition in the binary i-j
system. To this end, several ‘‘geometric’’ models, based
upon regular solution theory, have been proposed. Three of
these are illustrated in Figure 2. In each of these models,
g" in a ternary solution at a composition point p is estimated
from the excess Gibbs energies in the three binary subsys-
tems at points a, b, and ¢ by the equation

8FRT = (aypm X, X, + ty4) X, X, [43]
+ By X))+ (G X, + G X3)

where @y, s, and oy, are the binary functions of Eq.

"[41] or [42] evaluated at points a, b, and c.

In the Muggianu method,!'? g, is assumed to be constant
along lines of constant (X, — X)). Hence, if @, in the binary
systems is written in *‘Redlich—Kister’* form as in Eq. [42],
then Eq. [42] for each binary system can be substituted
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directly into Eq. [43]. In the Kohler method,!™¥ a, is as-
sumed to be constant along lines of constant ratio X/(X; +
X). If one writes,

a; = °q; + g, X/X, + X)) [44]
+ gy (XX, + X)P +...

then the coefficients "g; are numerically equal to those in
Eq. [41] because X/(X; + X)) = X, in the i- binary system,
and Eq. [44] for each binary system can then be substituted
directly into Eq. [43]. Finally, in the Toop method,'¥ a,,
and @, written as in Eq. [41] with X; = X, and a,;, written
as in Eq. [44], can be substituted directly into Eq. [43].

The extension of the geometrical models to N-component
systems is straightforward. Additional terms are simply
added to Eq. [43].

Returning now to the question of estimating the cross
parameters from the binary self parameters, let us apply the
Toop method, with component 1 as the solvent, for all 1-f
binary systems. That is, assume «,; to be constant at con-
stant X;. For all other systems i-j that do not contain the
solvent (i = 2, j = 2) set a; = 0 as a first approximation.
This gives

N
gRT = X [X.X, Cqy, + 'ay X,
+2q, X3 +.) + CX]

[45]

By expanding Eq. [45], collecting terms, and comparing to
Eq. [39], the following simple relationships are obtained
for estimating the cross parameters:

g; = (8, + g2 [46]
g = (8 T &5 T g3 v [47]
Ep = (& + €y T Buw + E4y)/4 elc. [48]
For example, ,
83 = €33y = B3 = (28,5, t £55,)/3 {49]

Using the Muggianu model rather than the Toop model
gives equations that are similar to Egs. [46] through [48]
but not as simple. The Kohler method cannot be used di-
rectly because this model involves ratios of mole fractions
which are not equivalent to a simple polynomial expression
as in Eq. [39]. Hence, it is proposed that Eqgs. [46] through
[48] be used for estimation purposes.

As discussed in the subsection to Section II-B, Eqgs. [46]
through [48] should only be used if, in fact, the solute-
solute interactions can reasonably be assumed to be weak.

Finally, suppose that one wishes to estimate cross param-
eters in a ternary solution, where component 1 is the sol-
vent, and that one possesses experimental data for the
binary system 2-3. In general, these data are of limited
value in this regard, because interactions between compo-
nents 2 and 3 in a binary solution containing only com-
ponents 2 and 3 can be very different from interactions
between components 2 and 3 in dilute solution in a solvent
1. If all three components are chemically similar (all metals,
for example), then it is probably justified to approximate
&,; from Eqgs. [29] and [30] as

& = (& T £33)/2 + ay {50]
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with a,, as a constant. However, there is little justification
for expanding oy, as a polynomial as in Eq. [41] or [42],
and an average value over the 2-3 binary should suffice.

Of course, if estimations of the thermodynamic proper-
ties of an N-component system are being made over a wide
composition range such that no single component can be
considered to be the solvent, then one should not use the
unified interaction parameter formalism at all. In such
cases, one of the geometric models of Figure 2 might be
used. See, for example, references 15 through 17. In this
case, an argument in favor of the Kohler and Toop models
over the Muggianu model is given in Section V.

III. INTERACTION PARAMETER FORMALISM
WITH MOLAR RATIOS

Another means of rendering the interaction parameter
formalism consistent with the Gibbs—Duham Eq. [4] and
with Eq. [7] is to replace the mole fractions X; in the ex-
pansions by the molar ratios y, = X,/X, (where 1 = solvent).

In the general case,

N N
ln Y = ln 'y? + ]; ax'jyj + jéz Si[k)}jyk +... (l > 2) [51]
R 2 ¥
Invy = — ‘ijkzzz Vi Ve — Ej]dzz Eirt ViVe Yt — - [52]

Equations [51] and [52] are very similar to Egs. [35] and
[36], with the important exception that the (In y,) terms of
Eq. [35] do not appear in Eq. [51]. It can easily be shown
that Egs. [51] and [52] satisfy Egs. [4] and [7]. Further-
more, the very simple relationships of Eq. [37] can also be
shown to apply. :

The advantage of using molar ratios in graphical inte- -
grations of the Gibbs—Duhem equation was recognized very
early,'®'"! and the application to the case of first-order in-
teraction parameters was pointed out by Schuhmann.%
However, Eqgs. [37], [51], and [52] for the general case have
not been given previously. Similar expansions are used in
the well-known Pitzer equation®! for aqueous solutions.
Here, the composition variables are the molalities m, =
(v/y,) (1000/M,), where M, is the molecular weight of the

. solvent.

An advantage of the interaction parameter formalism
with molar ratios is that Egs. [51] and [52] can be written
with weight ratios (m,/m,) in place of the molar ratios y,,
because weight ratios vary directly as molar ratios: (m,/m,)
= y(M/M,), where (M/M,) is the ratio of molecular
weights. It is only necessary to multiply each interaction
parameter by a constant. This conversion is not so simple
when mole fractions are used as in Eqs. [35] and [36],
because weight fractions do not vary directly as mole frac-
tions. :

The disadvantage of the molar ratio representation is that
it is not consistent with the quadratic formalism, and so,
for simple substitutional solutions at least, it is less likely
to provide as good a fit to experimental data and to extrap-
olate as well as do Eqgs. [35] and {36].

Nonmetallic Solutes in a Metallic Solvent

However, as pointed out by Schuhmann,? the molar ra-
tio Egs. [51] and [52] can provide a better representation
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of the data in certain cases such as solutions of nonmetallic
solutes in a metallic solvent, provided that a different def-
inition of v, is adopted.

Defining an ideal solution as one in which g, = X, implies
a random distribution of all species 1, 2, 3, ... on one set
- of equivalent lattice sites. The activity coefficient defined
as in Eq. [2] can thus account for the excess enthalpy and
for the nonconfigurational entropy but can only account
well for small excess configurational entropy effects @e,
for small departures from a random substitutional distri-
bution.)

As an example, Schuhmann® showed that the excess
thermodynamic properties of relatively dilute solutions of
ny moles of a nonmetallic solute X (such as O, S, and C)
in ng, moles of Fe solvent can be well represented by a
model in which Fe and ““FeX”’ are the components. One
mole of solution contains ny moles of “FeX’’ and (n,, —
ny) moles of ‘‘unassociated’’ Fe, so that

' nx '
- e S 53
pex = Vrex Ny + (nn — 1) Veex Vx [53]
ge — Ny
= T X 54
aFe ’YFe nX + (nFe _ nx) [ ]

Applying the quadratic formalism as in Egs. [19] and [20]
gives

1

In ypx = In ¥4y + &, Ox — Eyi) [55]
In yp = — (£2/2) Y% [56]

.However,

rex Vrex nx
ay = K—= = A — [57]
x aFe ')/Fe (nFe - nx)
Hence,
nx

= yy ———0 58
ax = Yx (re — 113) [58]

If one substitutes yy = K(Vpex/V%.) inito Egs. [55] and [56],
the quadratic terms cancel, giving

In v =Tn (¥%)' + e yx [59]

That is, a linear formalism in terms of yy is predicted as
long as the activity coefficient is defined by Eq. [58] and
not by Eq. [2].

This is not meant to imply the existence of FeX ‘“mol-
ecules’’ in solution. If the solute, for example carbon, forms
an interstitial solution, then the same Egs. [53] through [59]
apply, because distributing n, X atoms and (ng, — ny) va-
cancies randomly over ng, equivalent interstitial sites ob-
viously gives the same configurational entropy as
distributing n, ‘‘FeX’’ species and ng. Fe atoms over n,,
equivalent sites. Although Schuhmann used this argument
for both carbon and sulfur as solutes in Fe, it is probably
more realistic to consider S as a substitutional solute in
molten Fe. Nevertheless, Eqs. [53] through [59] can still be
shown to apply if we assume short-range ordering such that
Fe and S occupy equivalent sites but S-S nearest-neighbor
pairs are prohibited. In this case, the configurational entropy
is given by distributing (Zny) nearest-neighbor Fe-S pairs
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and [(Z2)(nz, + ng) — Zng] = (Z/2)(ns, — ng) nearest-
neighbor Fe-Fe pairs over (Z/2)(nz, + ng) ‘“bond sites,”’
where Z is the coordination number. If the Ising approxi-
mation is applied,?” this can be shown to give the same
expression for the configurational entropy as in the case of
a solution of Fe and ‘“FeX’’ species.

Schumann® extended Eqs. [53] through [59] to the case
of two nonmetallic solutes in a metallic solvent. It is easy
to show in general that the linear formalism in terms of Vi
Eqgs. [51] and [52], is predicted by the model for any num-
ber of nonmetallic solutes. ,

It may also be predicted that the molar ratio formalism,
as is used in the Pitzer equations, should apply well to
aqueous solutions in which ionic solutes are surrounded by
a solvation shell of water molecules, because this is similar
to an interstitial solution or to an ordered solution in which
solute-solute nearest-neighbor pairs are prohibited. How-
ever, in this case, v, should be defined similarly to Eq. [58],
and this is not usually the case in the Pitzer equations.

It should be stressed that there is no thermodynamic rea-
son for preferring Egs. [35] and [36] in the case of metallic
solutes and Eqs. [51] and [52] in the case of nonmetallic
solutes, because both formalisms are thermodynamically
consistent. However, the former will more likely yield a
better fit to experimental data, with fewer coefficients and
a higher probability of extrapolating well, in the case of
metallic solutes, while the latter will more likely be better

~ for nonmetallic solutes.

Usually, of course, a solution will contain both metallic
and nonmetallic solutes. In this case, it is recommended that
the mole fraction unified formalism be used, Eqgs. [35] and
[36], and that the association of solutes as discussed in Sec-
tion IV be taken into account.

IV. ASSOCIATION OF SOLUTES —
TEMPERATURE DEPENDENCE OF
PARAMETERS

As was pointed out in the subsection to Section III, a
definition of v, as in Eq. [2] for all solutes implies an ap-
proximately random distribution of species 1, 2, 3, ... on
equivalent sites. Simple series expansions for In v, cannot
therefore be expected to yield satisfactory results when
there are large deviations from a random distribution.

An important case in point is a liquid solution of a non-
metallic solute X and a relatively reactive metallic solute
M in a less reactive metallic solvent (e.g., Al and O in F e).
In this case, there is a strong tendency to form associated
molecules MX.

As an example, activities of sulfur have been mea-
sured24%1 at several temperatures from 400 °C to 1000
°C and over a range of compositions in liquid solutions of
S and Cu in Pb solvent. If these data are represented by a
first-order interaction parameter formalism as in Egs. [31]
through [33], then it is necessary?s for £ 10 have an
extremely large temperature dependence. If, as is usually
done, one writes

RTe = AT — B [60]
e = AR — BIRT [61]

then the entropic term, (B/R), required to fit the data is 526
J/mol K,2#26! which is two orders of magnitude larger than
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Fig. 3—Activity of sulfur (liquid standard state) in liquid Pb-Cu-S
solutions. Curves are calculated with AG® = —62,500 J/mol for Reaction
[62]. A (Ref. 23); +, X, and * (Ref. 24); and @ (Ref. 25).
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under a pressure po, in liquid Sn-Fe-O solutions calculated®® by assuming
association as in Eq. {68]. Points are from Ref. 27.
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Fig. 5—The three geometric models of Fig. 2 when the composition point
p is close to the 2-3 binary system.

is physically reasonable. This result indicates that the as-
sumptions of the model are incorrect.

Let us assume instead that Cu and S atoms are associated
to form CuS molecules:

Cu + § = CuS [62]

so that there are now three solute species: CuS, unasso-
ciated Cu, and unassociated S. If ny and n, are the overall
number of moles of S and Cu in solution, then

ng = Mg ~ Mgy [63]
n'Cu = nCu - n":‘uS [64]
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where ng, ng,, and ng,s are the numbers of moles of un-
associated S and Cu and of CuS associates. Mole fractions
may be defined as

X = ni/(ng + ng, + ngg) [65]

i

and the unified interaction parameter Eq. [35] for in v, (i
= Cu, S, CuS) is written in terms of these mole fractions.
From a critical evaluation of data for the Pb-S and Pb-Cu
binary solutions, the following binary parameters were ob-
tained:

In y4 = —0.7074 — 4918/T

ees = 14147 — 5218/T
Esss = 22,580/T [66]
"In y%, = —0.3879 + 3065/T

Eoncw = 0.7758 — 6130/T

All the data?*2423 for the ternary Pb-Cu-S solutions were
then represented®® by selecting AG® of Reaction [62] to be
—62,500 J/mol (where the standard states were chosen as
pure liquid Cu, S, and ““‘CuS’’).

That is, ’

K = (Xtus/Xouw X)(YousYou ¥s) [67]
exp (—62,500/RT)

As can be seen in Figure 3, all the data are well represented
with this one temperature-independent parameter. No ter-
nary interaction parameters were required. That is, &y,
Ecucusy Escusy AN Egugycusy Were all set to zero.

As a second example, the effect of Fe additions upon the
solubility of oxygen in molten Sn was studied at 1300 °C.2"
Results are shown in Figure 4. If only Fe and O species
are considered, then a curve of this shape can only be re-
produced through the use of several cross parameters €y,
Eoreres €1C. A simpler result is obtained by assuming asso-
ciation according to

I

Fe + O = FeO [68]

With In Y2, eere, aNd Eggrere taken from a critical evaluation
of data for Sn-Fe solutions,?®! and with AG° chosen as
—42,760 J/mol for Reaction [68] (relative to liquid Fe, lig-
uid ““FeO”’, and O at infinite dilution as standard states),
the data are well fitted with only this one parameter, as can
be seen in Figure 4.1281 The interaction parameters €50, Egpe,
Ereeoy Eomeoy AN Egeoyraoy Were all set to zero.

Bouchard and Bale®3% had similar success in represent-
ing data in molten Fe by assuming ‘“AlO”’ and ‘‘CaO’’
associates.

Generally, if there are strong interactions between two
solutes i and j, then a temperature dependence for g, as in
Eq. [61] is invalid, and association of solutes should be
explicitly taken into account.

V. DILUTE SOLUTIONS OF A SOLUTE IN A
BINARY SOLVENT

For nondilute solutions in which no single component
can be considered to be the solvent, it was recommended
in the subsection to section II-C that one of the geometric
models of Figure 2 might be used. At least in the case of
a dilute solution of a solute (component 1) in a binary sol-
vent (components 2, 3), the Toop and Kohler models are
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to be preferred, as can be seen with reference to Figure 5.
When the ternary composition point is close to the 2-3 bi-
nary system, then the Toop and Kohler models estimate
excess properties at the dilute ternary composition p from
values for dilute solutions of 1 in 2 (point a) and dilute
solutions of 1 in 3 (point c¢). In contrast, the Muggianu
model uses binary values much further from the dilute
range. The Muggianu model is thus less likely to provide
a good estimate. This may be taken as an argument for
preferring the Kohler or Toop model over the Muggianu
model in general.

A more sophisticated model of dilute solution behavior
is supplied by the coordination cluster theory?!3231 of
which the Toop model is a very simple limiting case. For
the dissolution of a dilute solute C in a binary solvent A-
B, the theory considers the formation of (Z + 1) different
“‘coordination clusters’” by the reaction

C+(Z—i)4d+iB=C (4, B)

where Z is the coordination number. In this way, the non-
random configurational entropy is taken into account. When
the solution is also dilute in B, then C(4,_, B) clusters pre-
dominate, and the coordination cluster theory reduces
closely to the association model of Section IV. Blander
pointed out, on the basis of coordination cluster theory, that
the usual practice of expressing the temperature dependence
of cross-interaction parameters by Eq. [61] can be invalid.

0<i<Z [69]

VI. CONCLUSIONS

The several attempts to extend the interaction parameter
formalism to higher-order polynomials and to render it ther-
modynamically consistent at finite concentrations have
given rise to much confusion and complexity. The problem
is best resolved through extension of Darken’s quadratic
formalism, which has a sound theoretical foundation. This
leads to the general and simple equations of the unified
interaction parameter formalism, which reduces to the orig-
inal Wagner formalism at infinite dilution.

The first-order equations proposed by Hajra et al"! for
ternary systems, while thermodynamically consistent, are
not based upon a theoretical model, and so are less likely
to provide a good representation of experimental data or to
extrapolate well. Furthermore, these equations are complex
and not easily generalizable to higher-order terms and to
N-component systems. The proposed equations of Srikanth
and Jacob® are not consistent with the necessary thermo-
dynamic relationship of Eq. [7].

Very simple general relationships [46] through [48] have
been derived for estimating higher-order cross parameters
from binary parameters in a first approximation.

The interaction parameter formalism can also be ren-
dered thermodynamically consistent at finite concentrations
by replacing mole fractions by molar ratios (X/X,). General
equations to any order for N-component systems are given.
In general, these equations will not provide as good a rep-
resentation of data, nor will they extrapolate as well, as the
equations of the unified formalism in terms of the mole
fractions. However, if the activity coefficients are properly
redefined, as shown by Schuhmann,?? then the molar ratio
formalism may be better for solutions with only interstitial
solutes. It has been shown in the present article that this
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should also be true for ordered substitutional solutions, such
as solutions of S or O in liquid Fe, and for aqueous solu-
tions. Also, the molar ratio formalism lends itself better to
the use of weight fractions.

For solutions of a reactive metal and a nonmetal in a
metallic solvent (such as Al and O in molten Fe), the for-
mation of complex species such as ‘*‘AlO’’ must be explic-
itly taken into account; otherwise, an unreasonably large
temperature dependence of the cross-interaction parameters
will result. In such cases of strong solute-solute interaction,
the usual practice of expressing the parameters as linear
functions of (1/T) is invalid.

It has also been shown that for more concentrated solu-
tions, the use of the Kohler or Toop interpolation model
for predicting multicomponent thermodynamic properties
from binary data is to be preferred over the use of the
Muggianu model, which is widespread.
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