- Optimization of Binary Thermodynamic and Phase Diagram Data

CHRISTOPHER W. BALE and A.D. PELTON

An optimization technique based upon least squares regression is presented to permit the simul-
taneous analysis of diverse experimental binary thermodynamic and phase diagram data. Coefficients
of polynomial expansions for the enthalpy and excess entropy of binary solutions are obtained which
can subsequently be used to calculate the thermodynamic properties or the phase diagram. In an
interactive computer-assisted analysis employing this technique, one can critically analyze a large
number of diverse data in a binary system rapidly, in a manner which is fully self-consistent thermo-
dynamically. Examples of applications to the Bi-Zn, Cd-Pb, PbCl,-KCl, LiCl-FeCl,, and Au-Ni binary

systems are given.

I. INTRODUCTION

For a binary solution phase, many diverse sets of
experimental thermodynamic data may be available. Activi-
ties of one or more components at various compositions and
temperatures may have been measured by emf, vapor pres-
sure, mass spectrometric, or other techniques. Enthalpies of
mixing may have been determined calorimetrically. The ex-
perimental equilibrium phase diagram is also a source of
thermodynamic data. If the Gibbs energy of fusion of a
stoichiometric component is known, for example, then the
activity of this component in the liquid phase can be calcu-
lated (nonisothermally) along its liquidus. Even a mis-
cibility gap is a source of thermodynamic data, since the
activity of either component is the same at both ends of any
tie-line, even though the actual values of the activities may
not be known.

The various thermodynamic properties are all related via
the Gibbs-Helmholtz and Gibbs-Duhem equations. If suf-
ficient data are available, then in principle it is possible to
obtain one “optimum” equation for the Gibbs energy of the
solution as a function of temperature and composition. Ob-
taining such an expression involves the critical assessment
and correlation of all the data as well as the testing of the
data for internal consistency. In practice, however, such an
operation is not an easy task due to the complexity of the
relationships among the various measured properties.

The development and application of techniques to per-
form such analyses is a subject of current interest.'™ In the
present article, a linear least squares optimization technique
is proposed which can be used in a computer-assisted critical
analysis of binary thermodynamic and phase diagram data
including liquidus/solidus lines of components and inter-
mediate compounds as well as miscibility gap boundaries.

For a binary solution of components A and B, the integral
molar Gibbs energy of mixing relative to the pure compo-
nents is expressed as:

Ag = RT(X,In X, + Xz In X;) + g© (1]

where X,, Xp are the mole fractions and g is the excess
integral molar Gibbs energy. (For certain systems, a dif-
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ferent choice of the ideal terms in Eq. [1] may be more
convenient.) g© may be expressed as a polynomial in the
mole fraction Xj:

E

g =

Mz

d)mjan:&”j(l - XA)nj [2]

J
where the quj,,j are coefficients, M is the total number of
such coefficients, and m; and n; are positive integral powers.
For example, in a regular solution, M = 1, m; = n; = 1,
and g is quadratic:

8" = duXu(l — X,) [3]
In a “sub-regular” solution, M = 2, and g* is cubic:
8" = duXu(l — Xu) + PuXa(l — X, (4]

There is some freedom in how the two terms of a sub-
regular solution expression may be chosen. For example,
one could have written Eq. [4] in terms of ¢, and ¢y,
or in terms of ¢y, and ¢,,;. All these cubic expressions would
be equivalent.

The coefficients d)m].,,j may be written as linear functions of
temperature, 7:

(;bmjnj = hmjnj - Tsmjn]- [5]

Hence, the integral molar enthalpy of mixing and excess
entropy of mixing, assumed. independent of 7, are given in
terms of the coefficients h,,, and s, as:

M
AR = 2 By X0(1 = X, [6]
=1 ,

M
S5 = 2 s X1 — X,) [7]
j=1
The partial excess Gibbs energy of A, g5, may be obtained
from differentiation of Eq. [2] via the expression:
dg®
F=gf+ (1 —X)— 8
84 = &8 ( A) dx, (8]

to give:’

M
=2 [ X3~ + (1 — my — n)XW](1 — X, [9]
=

ISSN 0360-2141/83/0311-0077$00.75/0

METALLURGICAL TRANSACTIONS B

© 1983 AMERICAN SOCIETY FOR METALS AND

VOLUME 14B, MARCH 1983 — 77

THE METALLURGICAL SOCIETY OF AIME

20



Analogously for gz, one obtains:

M
= 2 Gy [ (1 = X)W
j=1

+ 1 —m—n) (1 = X)X [10]

In general, for the excess Gibbs energy of any constituent
A B 1—x-

A Bi—x 2 ¢mjn]{(1

+ Lomy(1 = X)) + (1 — 0)nX,]
Xp'(1 = X)) = xm(1 = x)vy (1]

Setting x = 1 or x = 0 in Eq. [11] yields Egs. [9] and
[10], respectively.

Expressions analogous to Egs. [9] to [11] can be written
for the partial enthalpies of mixing Ah,, Ahg, and Ahyp,
and for the partial excess entropies of mixing sf, s5, and
SEXB1 in terms of the coefficients hmj,, and Smyn;-

Hence, a set of coefficients hmj,,! and a set of coefficients
Smn, are sufficient to express all thermodynamic properties of
the solution provided that (i) polynomial expansions yield
adequate representations of the excess properties, (ii) Ah
and s* are independent of T. These two conditions are met
in practice by a large number of binary solutions. The
present optimization technique seeks to obtain these two sets
of coefficients from a critical self-consistent analysis of all
the available diverse experimental thermodynamic and
phase diagram data.

Although the present paper deals only with temperature
independent polynomial expansions of Ak and s, in prin-
ciple the optimization technique can be extended to expres-
sions for Ak and s which are temperature dependent or
which are other than simple polynomials.

n/)XA’(l — X,\)

II. THEORY

A. Basic Principles of Multiple Least Squares Regression
Analysis with One Independent Variable

The least-squares method for calculating an expression
which smoothly fits experimental data as closely as possible
is one of the most popular techniques of regression analysis.
Most computer installations have an “in-house” least-
squares algorithm that is already programmed and can be
“called” by any user of that computer. Since the theory and
the computer algorithms are well documented elsewhere
(for example, see References 8 to 10), only the basic prin-
ciples will be presented here.

Suppose that for a dependent variable y and an indepen-
dent variable x one has N experimental data point pairs

vi, x; (i = 1,N). In order to fit these data via a least squares
regression analysis to an equation, for example:
y=b + bx+ bx*+ bxInx [12]
it is first necessary to set up a matrix z;, where:
Zp = 1
Zp = X .
o, i=1N [13]
Zz = X
Zig = X In Xi
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The sum of the squares of the deviations is given by:

N 4 2
s=2 (y,. - Zb,zij> [14]

i=1 j=1
In the multiple least squares regression, S is minimized by
setting dS/db; = 0 for j = 1,4. This yields 4 simultaneous
linear equations which may be solved by a standard nu-
merical method to obtain the coefficients b; (j = 1,4). One
such method is the Gauss-Jordan reduction algorithm that
is well documented in the literature. For example, an algo-
rithm written in FORTRAN-IV is listed in Reference 10.

B. Least Squares Optimization of Binary Integral
and Partial Gibbs Energies When T Is Constant

Suppose that at a constant temperature g has been mea-
sured at Ng different compositions, while g5 and g have
been measured at Ng, and Ngp different compositions,
respectively. One wishes to obtain a set of coefficients
Gy G = 1, M) in order to fit these data by least-squares
regression to Egs. [2] [9], and [10] simultaneously. This
simultaneous fitting is made possible through the fact that
Egs. [2], [9], and [10] all are written in terms of the same
coefficients ¢,,,. This is the crux of the present technique.

One first chooses the appropriate polynomial expansion
(regular, sub-regular, etc.) by choosing M and by choosing
the powers m; and n;. The independent variable is X,. The
total number of data points is N = (Ng + Nga + Ngp). The
dependent variable y; and the matrix z; are then defined
as follows:

yi=g
vi=ghs oz = [mXp 4+ (L —m—
(1= X,

for i= (Ng+ 1),(Ng + Nga) [16]
[n(1 = X)" + (1 = m; = m)
“(1 = X)X
for i = (Ng+ Ngu + 1),(Ng + Nga + Ngg) [17]

z; = Xp(l — X, )% for i=1,Ng (15]-
n)X]

)’i:ggi; Zj =

The sum of squares can now be written as in Eq. [14], and
the coefficients ¢, n Cal be calculated

If experimental data points for gf 5, of any constituent
were available, these could be included in the analysis in a
similar manner via Eq. [11].

Experimental partial and integral enthalpy or partial and
integral excess entropy data could be fitted in an exactly
analogous manner to find the coefficients hmj,,j or s,,,j,,

In practice it is frequently desirable to “weight” certain
experimental points more heavily than others. This may be
accomplished by multiplying both y; and z; for this point by
a “weighting factor”, w;. If desired, this can be done in a
systematic manner by “normalizing” such that w;y; = 1 for
all i. The use of weighting factors will be discussed later in
connection with the examples.

C. Least Squares Optimization of Binary Data in the
General Case

In the general case, suppose that experimental data points
g:, gk, etc. are available, each at a different 7; and X,. By
substituting Eq. [5] into Egs. [2], [9], [10], and [11], one
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can obtain all coefficients h,,,j,,j and Smyn; simultaneously in a
single regression analysis similar to that discussed above.
Experimental enthalpy data, Ah;, Ah,, and Ahg, can be
treated in the same regression analysis as the Gibbs energy
data by considering an enthalpy data point to be an excess
Gibbs energy data point at 7 = 0.

Another source of thermodynamic data is an experimental
miscibility gap, since the activities of each component are
equal on the two phase boundaries at each end of a tie-line,
even though the actual values of the activities may not be
known. These data can also be treated simultaneously with
all the other data as will be discussed later in connection
with example 5.

An interactive computer program called FITBIN has been
written to carry out the optimization analysis. This program
simply applies the least-squares method (section II-A) to the
Egs. [15] to [17]. The user enters all the raw experimental
data points (activities, enthalpies, temperature-composition
coordinates of measured phase boundaries, efc.) and then
interacts with the computer by changing weighting factors,
changing the number of terms in the polynomial expansions
and so on until, in his estimation, the “optimum” represen-
tation of the data has been obtained. Several examples of
optimization analyses will now be presented.

III. SAMPLE CALCULATIONS

A. Example 1 — Optimization of Isothermal Data for
Partial Properties of Both Components

The partial enthalpies of mixing of both Bi and Sn in
liquid Bi-Sn alloys at 725 K have been measured indepen-
dently by solution calorimetry." Average values for each
composition are given in Table I.

One could now fit the experimental values for Ahg,
by least-squares regression to an appropriate polynomial
expansion in the mole fractions, and then calculate Ahg;
via the Gibbs-Duhem relationship, or vice versa.
Alternatively, one could calculate the integral enthalpy,
Ah = Xs,Ahg, + XpAhg;, at each composition and then fit
these values by a least squares regression to a polynomial
expansion as in Eq. [5]. However, none of these methods
makes full use of all the available data. The optimization

Table I. Partial Enthalpies for Bi-Sn
Alloys at 725 K (J mol ™)

Calculated
Experimental"' (Egs. [19] and [20])
XSn A]/lBi AhSn AhBi A]llsn
1.0 510 25 544 0
0.9 456 - 13 452 4
0.8 338 46 368 21
0.7 238 113 289 46
0.6 209 151 218 84
0.5 100 159 155 138
0.4 75 272 100 201
0.3 63 305 59 280
0.2 38 351 25 377
0.1 63 519 8 485
0.0 - 13 636 0 615
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method as discussed in section II-B, on the other hand, fully
utilizes all the available information.

The 22 data points of Table I were substituted into
Egs. [16] and [17] (with partial enthalpies in place of partial
excess Gibbs energies), with ‘A’ = Bi, ‘B’ = Sn,Ng = 0,
Nga = 11, Ngz = 11. The coefficients h,,,j,,. were
then calculated. With the choice of M = 2 coefficients
(sub-regular solution) the calculated optimized coefficients
were: hy, = 613.8 J, h, = —68.6 J. Hence:

Ah = 613.8XgXs — 68.6XzX%  Jmol™  [18]

Ahg = 613.8(1 + (= 1)Xg)Xsn — 68.6(1 + (—2)Xp) X2,
= 545.2X% + 137.2%X%  J mol™ [19]
Ahg, = 613.8(1 + (= DXen)Xa — 68.6(2Xsn + (—2)X30)Xa;
= 613.8X3 — 137.2X3Xs,  J mol™ [20]

Values of Ahg; and Ahg, calculated from Egs. [19] and [20]
are also listed in Table I. When the calculations were re-
peated with M = 3 or M = 4 coefficients, no significant
improvement of the representation was obtained.

B. Example 2 — Coupled Thermodynamic/Phase
Diagram Analysis of a Simple Eutectic System with
Limited Solid Solubility

The phase diagram of the Cd-Pb system is shown in
Figure 1. This is a simple eutectic system with limited solid
solubility on the Pb-rich side and negligible solid solubility
in the Cd-rich solutions. The liquidus and solidus have been
measured several times with good agreement among the
measurements (=2 °C for the liquidus). The enthalpy of
mixing of the liquid has also been determined and is known
to =105 J. All the data for this system are reviewed in
Reference 12.

Excess partial Gibbs energies of Cd and Pb can be calcu-
lated at points along their respective liquidus lines from the
well-known expression:

RTIn X, + g5 — RTIna} = —Agfy [21]

where A = Cd or Pb, T = liquidus temperature, X} =
liquidus composition at 7, aj = activity with respect to
pure solid A in the solid on the solidus at 7, and Agfy is
the molar Gibbs energy of fusion of A at 7. For Cd, one
can set agg = 1.0 since there is negligible solid solubility.
For Pb, one can assume that Raoult’s Law holds in the
dilute solid solutions such that ap, = X3, where X3, is
the solidus composition at 7. Free energies of fusion are
given by Reference 13.

Agica = 3941 + 37.024T + 6.079 X 10772
~7401TIn T T mol™ [22]
Aglen = 1937 + 46.129T + 5.899 X 107°T?
— 8.268TInT I mol™ [23]

The enthalpy of the liquid has been fitted'? by least-
squares regression to the following expression:

Ah = XcoXp(15564 — 21184Xp, + 35731X%,
— 31752X3, + 11042X%) J mol™
[24]
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oo MOLE FRACTION —-3 FR
0.0 0.20 0.40 0,60 0.80 1.00
TEMF (C) I I I I 1 I 1 I I I I
330,000 CLLLLLLLLLLLLLLLELLLLL L L L Ll e L L L L L L L
327,000 LLLLLLLLLLLLLLLLLLLLL L bl b L L L L L
324,000  LLLLLLLLLLLLLLLLLL L Ll L L L L L L
321,000 LLLLLLLLLLLLLLLLLLLELL L L bbb b L b L L L L L L
318,000 LLCLLLLLLLLLLb bbbl L bbb L L b L L L L L L L L
315,000 BLLLLLLLLLLLLLLLLLLLLLE bbb bbb b b bl L L L
312,000 BULLLLLLLLLLLLLLLLLLLLELLEL L L L L b b L b L L L L L L
309,000  BALLLLLLLLLLLLLLLELLLLLL L L L L L L L L L L L L L L L L L L
306,000 BVLLLLLLLLLLLLLLELLLLLL L L L L L L L L L L L L L L
303,000 B OALLLLLLLLLLLLLLELLLL Ll e Ll L L L L L
300,000 B \LLLLLLLLLLLLLLLLLLLLL L bbb Ll L L L L L L L L
297,000 B \LLLLLLLLLLLLLLLLLLLLLLLL bbb bbb b L L L
294,000 R bbbl b L L L e L L L L L L L L L L L
291,000 B L L L L L L L
288,000 R L L L L L L L] has
285,000 B LLbbbbb bbbl bbb L L b L b b L L L L L L Y
282,000 R bbbl bbbl L L DL L L L L L L L L LY sl
279,000 B Lol bbb L L L L L L L L L L L, XY
276,000 R LLLb bbb bbbl L L LY rYY:
273,000 B bbbl bbb L L L L L LYY
270,000 R LLLLLLL Ll L LY Y
267,000 R QLD L Y
264,000 P LYY
261,000 B Y
258,000 R AR
DEE. 000 R Xpp= 0.721 Y.
252,000 R LYY
249,000 R 247.8 °C AAL
246,000 B Al
243,000 R ABA
1 1 1 1 1 1 1 I 1 1 1
Cd Pb
Mol %

Fig. 1—Calculated Cd-Pb phase diagram.

By applying equations analogous to Egs. [9] and [10], ex-
pressions for Ahggand Ahyp, can be calculated from Eq. [24].

At each experimental liquidus temperature and com-
position g&; or gk can be calculated via Eq. [21]. By
combining these values with the value of Ahgy or Ahy, at
the same composition, one can calculate s&; at composi-
tions between Xy = 1 and the eutectic composition Xcqg),
and one can calculate s&, at compositions between Xp, = 1
and the eutectic composition.

Without access to the optimization technique, one would
now be obliged to calculate s§, for Xeq > Xcq by applying
the Gibbs-Duhem integration over this composition range
with sb, at Xcq, used as end-point for the integration. Then
one would calculate s&; for Xog < Xy by a similar opera-
tion. It would then be necessary to smooth these data in
some manner to obtain a polynomial expansion for s=. How-
ever, with the optimization technique one simply optimizes
the two sets of partial excess entropy data together in exactly
the same manner as was done with the partial enthalpy data
in example 1.

These calculations are further greatly expedited by the
program FITBIN. The user enters as input only the coeffi-
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cients of Eq. [24] for Ah, the coefficients of Eqs. [22] and
[23] for the free energies of fusion, and the T, X coordinates
of the experimental liquidus and solidus points. He assigns
weighting factors to each experimental point, and specifies
the number M of the coefficients s,,, to be calculated. All
other calculations (calculation of partial enthalpies, calcu-
lation of excess Gibbs energies from Eq. [21], calculation of
partial excess entropies, and optimization) are then per-
formed automatically.

From the calculated equations it is then possible to com-
pute the binary phase diagram. In the present case this was
done with aid of the F*A*C*T thermodynamic computer
center.* Figure 1 shows a computer-generated phase dia-
gram. A tabular output of phase boundaries can also be
generated so that precise comparisons can be made. If the fit
is not satisfactory, the user can then go back and change the
number of coefficients or the weighting factors, efc., until,
in his estimation, the “optimum” fit has been obtained. This
interactive conversation between user and computer permits
a critical analysis of all the data to be carried out rapidly.
Complete details of the operation of the programs are given
in Reference 14.
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With 5 entropy coefficients, the following optimized
equation was obtained:

SE = XCprb(6.569 - 20435Xpb + 50999X12’b

— 63.291X3, + 30.0516X%,) J mol K™
(25]

Agreement between the calculated diagram and measured
liquidus points is of the order of =1°. The calculated eutectic
composition and temperature agree within +0.5° and
+0.3 mol pct with the various measurements. Details are
given in Reference 12. Hence, the polynomial representa-
tion of thermodynamic properties is capable of reproducing
the measured phase diagram within experimental error lim-
its, even when the measurements are very precise.

In this example the experimental Ak data were first fitted
to Eq. [24], and then the phase diagram data were used to
optimize the expression for s%. It would also have been
possible to optimize the calorimetric Ak data and the phase
diagram simultaneously. That is, in the input to the com-
puter program one would give the experimental Ak, X data
points and the 7, X coordinates of the phase diagram. The
coefficients hmjnj and Smn; would then be optimized simulta-
neously by the technique of section II-C. In the present
example, in which the data are very precise, either technique
works well.

Partial Gibbs energies of Cd and Pb in the liquid calcu-
lated via Eqs. [9] and [10] agree within +125 J with values
measured by emf and vapor pressure techniques (see
Reference 12). Hence, the present analysis is in excellent
agreement with the measured thermodynamic properties of
the liquid. These liquid activity data could also have been
included as input in the optimization procedure. In this case,
the calculated functions for Az and s would probably
have been marginally more accurate, but the calculated
phase diagram would not have agreed within =1° with the
measured diagram. Since all experimental data are never
completely self-consistent, a decision as to which data one
wishes to include in the optimization and which data one
wishes to compare “after the fact” is inescapable.

Furthermore, the accuracies of the different data sets
can vary greatly and the number of data points is rarely
sufficient to constitute a statistical sample. Thus, no satis-
factory objective statistical criterion can be applied to de-
termine how many coefficients, M, give an “optimum”
fit. This decision must always be made with an element
of subjectivity.

In the optimization of the Cd-Pb system, weighting fac-
tors of 5 were applied to the experimental eutectic points.
This choice was made on the basis of the fact that eutectic
temperatures are usually known quite accurately. The choice
of weighting factors is made on the basis of experience.
Objective “normalization” techniques as discussed in
section II-B rarely work well in practice.

C. Example 3— Coupled Thermodynamic/Phase
Diagram Analysis with Intermediate Solid Compounds

The phase diagram of the PbCl,-KCl system is shown
in Figure 2. Liquidus points have been measured (by
Reference 15) to *=3° There are two intermediate solid
Compounds, (Pbclz)z/::,(KCl)l/;;, and (PbC12)1/3(KC1)2/3. There
is no evidence of solid solubility.
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Fig. 2— Calculated (lines) and measured (points)'® phase diagram of the
PbClL-KCl system.

The experimental'® enthalpies of mixing in the liquid have
been fitted” to the following expression:

Ah = XPbClzXKCl(_l7619 + 3004XKC1 - 28945)(%01
+ 15288Xk) J mol™ [26]

From their known" Gibbs energies of fusion, partial excess
Gibbs energies of PbCl, and KCI can be calculated along
their respective liquidus lines via Eq. [21]. If the Gibbs
energies of fusion of the two intermediate compounds were
also known (as is the case in some systems), then their
partial excess Gibbs energies could also be calculated along
their liquidus lines from Eq. [21], and an optimization
analysis on all four partial properties could be carried out
exactly as in example 2. In the present system, however,
these Gibbs energies of fusion are not known. Hence, ex-
perimental liquidus points along only the PbCl,- and KCI-
liquidus lines were used along with Eq. [26] for A/ in the
optimization analysis, exactly as in example 2, to obtain the
following expression for s%:

st = Xroor Xxai(6.159 + 2.130Xxq — 15.016X%c)
J mol'K™! [27]

The function s%/Xpyc Xk is well-behaved. Therefore,
assuming that this expression interpolates well across
the central composition region between the PbCl,- and
KCl-liquidus lines, one can calculate g(gbaz)m(xcbm and
8(ebey), skCly, 1D this region from Egs. [26] and [27] via
Eq. fl 1]. One can then use Eq. [21] to calculate the Gibbs
energies of fusion of the two compounds from their mea-
sured liquidus points. (All these calculations can be per-
formed automatically by the computer. The user need enter
as input only the 7, X coordinates of the liquidus points.)
The resultant expressions for the Gibbs energies of fusion
were obtained" as:

19707 — 27.870T J mol™ [28]
11954 — 15.594T J mol™' [29]

o —
Agiecryysmen,; =

o p—
Agf (PbClp)13(KClp3 —
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The phase diagram calculated from Egs. [26] to [29] is
shown in Figure 2. Agreement with the measured diagram
is within the experimental error limits of =3°.

D. Example 4— Phase Diagram Analysis — Complete
Liquid and Solid Solubility

The measured” LiCl-FeCl, phase diagram is shown in
Figure 3. No thermodynamic data for either phase are
available. Under the assumption that the liquid is ideal
(gfia = ghea, = 0 in the liquid), Eq. [21] can be used along
with the known Gibbs energies of fusion and the phase
diagram to calculate the activities, afic and afecy,, along the
solidus. Hence, the partial excess Gibbs energies in the
solid, g£& and g’éé&z, along the solidus can be calculated.
Under the assumption that s* = 0 in the solid, these partial
properties were then optimized to obtain the following ex-
pression for the enthalpy of the solid:

AR = 2100X{;ciXfect, + 8611X{;ciXrec, J/equivalent
[30]

where Al'® is the enthalpy of mixing per equivalent of solu-
tion (one mole LiCl = one equivalent, one mole FeCl, = 2
equivalents), and X{,c and Xf.c, are the equivalent fractions:
. Xiia _ ,

Xiia X + 2XFeC12 1 XFeClz [31]
In charge-asymmetric ionic solutions it is often desirable to
use equivalent fractions rather than molar fractions in the
polynomial expansions for the excess properties.

The phase diagram calculated under the assumptions of
liquid ideality and s*® = 0 with Eq. [30] for the enthalpy of
the solid agrees with the measured diagram within the error
limits of the latter.

In principle, it is possible to calculate both the enthalpy
of the liquid, A%, and the enthalpy of the solid, A/’, from
the measured phase diagram alone if it is assumed that
s¥ = 0 in both phases. Hence, a simultaneous two-phase
optimization could be carried out to obtain the coefficients
P,n, OF both AR and As® in one operation. Equations to
perform two-phase optimizations have been proposed by
Lukas and co-workers." In practice, such calculations are
extremely sensitive to the curvatures of the measured lig-
uidus and solidus,'® and experience has shown that measured
phase diagrams are rarely of sufficient accuracy to permit
meaningful results to be obtained.

(&)
e 700
@ Liquid /i
S \\ yd
2 -
[«] 500" -
1=
[0 Solid
=% = -
€
'2 300 ! | i | 1 1 I | I
[o] 20 40 60 80 100
LiCl FeCl,

Mol. %
Fig. 3— Measured" LiCl-FeCl, phase diagram (reproduced from Ref. 20).
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E. Example 5 — Phase Diagram Analysis— Regions
of Immiscibility

A portion of the measured” phase diagram of the Au-Ni
system is shown in Figure 4. The system exhibits a region
of immiscibility. Let X, and Xaug) be the mole fractions
of Au at the left and right ends of a tie-line. Equating the
activity of Au at these two points, one obtains:

RT In XAu(L) + giu(L) = RT In XAu(R) + giu(R) [32]

where the partial excess Gibbs energies at the left and right
ends of the tie-line may be expressed by Eq. [9]. Substi-
tuting in Eq. [9] and rearranging yields:

XAu L)

RT In 2 DAL (1 — Xa)" '+ (1 —m—ny)
j=1

(1 = Xauw)" Xiiw
— [ = X))

+ (1= m— ) (1 = Xauw)"]
- Xia} [33]

Experimental values of Xy, and Xau@ can be optimized via
Eq. [33] by the methods of section II, since the right-hand
side of Eq. [33] is linear in the coefficients ¢,,,. That is, in
the notation of section II, one sets:

XAu(L)i

;= RT; In ——
Y XAu(R)i

zy = (1 = X' + ... XRwyi] [34]

where X, and X,y are the experimental compositions at-
the ends of a tie-line at temperature T;. '

A similar expression to Eq. [33] can be written by
equating activities of Ni at either end of each tie-line.
Hence, each experimental tie-line results in two experi-
mental “data points”.

Enthalpies of mixing of the solid Au-Ni solution have
been evaluated.” These enthalpy data points as well as the
T, X coordinates of the measured miscibility gap were opti-
mized simultaneously to yield both h,,,,, and s, - in one
operation. The resultant optimized expresswns are:

Ah = XaXni(21.506 + 18.887Xy; + 8.858X%

— 22.121%%) kJ mol™ [35]
— 35.095X3;) J mol'K™! [36]

Equation [35] reproduces the measured enthalpy data
within the experimental error of +125 J mol™". The misci-
bility gap calculated from Eqs. [35] and [36] is compared
with that measured in Figure 4. Equation [36] agrees with
sE obtained” by combining measured emf and calorimetric
data to within +=1.3 J mol 'K™".

IV. CONCLUSIONS

A technique, based upon least-squares regression, has
been developed which permits diverse sets of thermo-
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dynamic data for a binary phase (activities, enthalpies, etc.)
as well as the binary phase diagram (which is also a source
of thermodynamic data) to be simultaneously “optimized”.
The results of this analysis are polynomial expansions for
the enthalpy and excess entropy which give optimum fits to
the thermodynamic/phase diagram data. As long as a poly-
nomial expansion provides a reasonable representation of
Ah and s, and as long as Ak and s* may be assumed to be
independent of temperature (as is the case in a great many
systems), optimizations can be obtained which reproduce
the experimental measurements well within their error
limits. For example, phase diagrams calculated from the
optimum equations can be accurate to better than 1°. Several
examples of applications have been given. Phase boundaries
involving intermediate binary compounds as well as im-
miscibility gap boundaries are included in the analyses.
An interactive computer program has been written to
assist in this analysis. Experimental data points, such as the
temperature-composition coordinates of phase boundaries,
are read directly into the computer. The user can then inter-
act with the program by changing weighting factors for the
data points, by changing the number of coefficients in the
polynomial expansions, and so on until, in his estimation,
the “optimum” fit has been obtained. In this way, a critical
analysis of a large number of diverse data can be rapidly
carried out, and the resultant equations are self-consistent
thermodynamically. These equations can be subsequently
stored in computer data banks for calculation of any thermo-
dynamic property or for calculation of the phase diagram.
This program is available on-line to users of the F¥*A*C*T

METALLURGICAL TRANSACTIONS B

(Facility for the Analysis of Chemical Thermodynamics)
data bank and data treatment center.'
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