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Abstract. Several "geometric" models have been proposed for estimating thermodynamic properties of a ternary
solution from optimized data for its binary subsystems. The most common are the Kohler, Muggianu,
Kohler/Toop, and Muggianu/Toop models. The latter two are "asymmetric" in that one component is singled out,
whereas the first two are "symmetric". The use of a symmetric model when an asymmetric model is more
appropriate can often give rise to errors. There are 64 possible simple geometric models for a ternary system.
Equations are developed to calculate the thermodynamic properties of an N-component solution (>3) in a rational
manner while permitting complete flexibility to choose any of the 64 possible geometric models for any ternary
subsystem. An improved general functional form for "ternary terms" in the excess Gibbs energy expression is also
proposed.

Introduction

Over thirty years ago, Larry Kaufman introduced the use of "geometric" models to CALPHAD. This article
presents a generalization of this concept.

* The molar excess Gibbs energy of a binary system with components 1 and 2 is often expressed as:
E
812 = XX, (1)

where X; and X, are the mole fractions and ai, is a parameter which, under the assumptions of regular solution
theory, is equal to the energy of forming two moles of (1-2) nearest-neighbor pairs according to:

1-1)+(2-2)=2(1+2) )
where (i - j) represents a first-nearest-neighbor pair.

The term a5 is often expanded as a polynomial in the mole fractions:
ap =), D ahX1X] ©)
i20 ;20
where the q{"z are empirical coefficients which may be temperature dependent. Eq (3) is frequently re-arranged
into "Redlich-Kister" form:

=" LIZ(Xl "Xz)i | (4)
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This is done because the coefficients ' L, tend to be less strongly correlated than the coefficients gf,. Clearly the

set of coefficients qf’z can be calculated from the set of ' L;, and vice versa.

For ternary systems, several "geometric" models may be proposed. Some of these are illustrated in Fig 1. In each
model, gE in the ternary solution at a composition point p is estimated from the excess Gibbs energies in the three
binary subsystems at points a, b and ¢ by the equation:

gE = X1 X030y + X2 X30030) + X3X 03y + (ternary terms) (%)
where ocylz(a) , Oloz(sy and o3y are the binary " o-functions" evaluated at points a, b and c. The "ternary terms"

are polynomial terms which are identically zero in the three binary subsystems. The empirical coefﬁcignts of these
ternary terms may be chosen in order to fit ternary experimental data. However, these ternary coefficients should

be small. That is, Eq (5) with no ternary terms should provide a reasonable first estimate of gE in the ternary

solution.

If, at a given temperature, all three binary a-functions are constant, independent of composition, then all geometric
models are clearly identical. The Kohler [1] and Muggianu [2] models in Figs 1a and 1c are "symmetric" models,
whereas the Kohler/Toop [3] and Muggianu/Toop [4] models in Figs 1b and 1d are "asymmetric" models inasmuch
as one component (component 1 in Figs 1b and 1d) is singled out. In these two asymmetric models, a2 and ) are
assumed to be constant along lines where X is constant. That is, replacing component 2 by component 3 is
assumed to have no effect on the energy, a;, , of forming (1-2) nearest-neighbor pairs as in Eq (2), and similarly
for (3-1) pairs. An asymmetric model is thus more physically reasonable than a symmetric model if components 2
and 3 are chemically similar while component 1 is chemically different, as for example in the systems
Si0,-Ca0-MgO, S-Fe-Cu, Na-Au-Ag, AlCI;-NaCI-KCl, etc. (where the asymmetric component has been written
first in each example). ‘

When gE is large and a2 and a3; depend strongly upon composition, a symmetric and an asymmetric model will

give very different results. As an example, consider a solution with a2 = a3 =-50(1-X1) kJ/mol and ap3 = 0.
That is, the binary solutions 1-2 and 3-1 have identical properties and the 2-3 solution is ideal. Clearly, one would

expect g% in the ternary system to be nearly constant at constant X, as is predicted by the asymmetric models.
However, when the symmetric Kohler model is applied to this solution, an obviously incorrect region of

immiscibility is calculated as shown in Fig. 2. Similar incorrect results are obtained with the symmetric Muggianu
model.

Therefore, we disagree with the current tendency to use the symmetric Muggianu model for nearly all solutions. In
many systems, an asymmetric model is more appropriate and can result in very different ternary Gibbs energy
functions.

As well as the four models illustrated in Figs la to 1d, many other geometric models might be proposed. Two of
these are shown in Figs. le and 1f. In general, rather than speaking of a model for a ternary 1-2-3 system, we
should instead define the approximation used for each of the three « ; functions. For example, in Figs le and 1f a
"Kohler type" approximation is used for a3 and a "Muggianu-type" approximation is used for as;. For ai, a
"Toop-type" approximation along lines of constant X, is used in Fig. le, while a "Toop-type" approximation along
lines of constant X; is used in Fig. 1f. Since each function ¢ can be approximated in four different ways, there are
64 such possible geometric ternary models. However, probably only the four models in Figs la to 1d are of
practical importance.



Suppose that data for the three binary subsystems of a ternary system have been optimized to give binary
coefficients g7, of Eq (3) or ‘L,» of Eq (4) and that we wish to estimate g¥ in the ternary solution by means of

Eq (5) having chosen which type of approximation we wish to use for each of the three «;; functions. .
Suppose, for example that we have chosen to use a Kohler-type approximation for a2 as in Fig. 1a. Along the line
ap in Fig. la, the ratio X, X+ X ,) is constant. Furthermore, this ratio is equal to X; at point a where

(X, + X,)=1. Therefore, the function a1 in Eq (5) can be written:

1 7] L.
. X
) =Y zq;e[ 4 j[ 2 ] ©)
i20 j20 Xi+X, ) (X +4,

where the qg_ are the binary coefficients of Eq. (3). Alternatively, if the 1-2 binary system was optimized with a
Redlich-Kister expansion, then iz in Eq (5) is written:

(X -X, )
Qo(a) = D, 'L | T2 (7)
i20 X+ X,

where the 'L;, are the binary coefficients of Eq. (4). That is, & 12(), as given in Eq (6) or (7), is constant along the
line ap in Fig la. Similarly, if we have chosen to use Kohler-type approximations for az3 and as1, then these would
be written in terms of the ratios X3 /(X 2+ X 3) and X /(X3 + X,) respectively.

Suppose instead that we have chosen to approximate a; by a Toop-type approximation along lines of constant X,
as in Figs 1b, 1d and le. In this case, aiaq) is set constant along these lines of constant X; by means of the
substitution:

Ao(a) =D, >ab, Xi (1—X1)j (®)
i20 j20
or ap@)=2. 'In b -0-x)" =3 'L, x, -1)’ ®
i20 i20

Finally, suppose that we have chosen to approximate a;, by a Muggianu-type approximation as in Fig. 1c. We note
that (Xl — X, ) is constant along the line ap in Fig. 1c. Hence, if a1, in the binary system has been expressed by a

Redlich-Kister polynomial as in Eq (4) then, as was pointed out by Hillert [4], Eq (4) can be substituted directly
into Eq (5) with no change. Because of this particularly simple substitution, the Muggianu model is sometimes
referred to as the "Muggianu-Redlich-Kister model". However, this is a misnomer. The use of the Muggianu

model does not require that the binary « -functions be expressed as Redlich-Kister polynomials, If ais is exxjressed

/2 are

both constant along the line ap in Fig. lc, and that these are equal to X; and X respectively in the 1-2 binary
system. Hence, in order that aja(,) be constant along the line ap we make the substitution:

a1+ X, -X - X,+ X I
Uaay = 2, th’z( : 2}( 1 2] (10)

i20 j20 2 2

as a general polynomial as in Eq (3), then we note that the functions |1+ X, — X, /2 and {I-X; +X,

Conversely, the use of the Kohler or Kohler/Toop models does not preclude expressing the binary a-functions as
Redlich-Kister polynomials, as has just been shown in Eqs (7) and (9). Hence, the choice between using the Kohler
or Muggianu approximations is not related to the use of Redlich-Kister polynomials.



Extension to Multicomponent Solutions

A database for a multicomponent solution of N>3 components is developed by first evaluating/optimizing
available data for the binary subsystems to obtain binary coefficients of Eqs (3) or (4). Next, an appropriate
geometrical model is chosen for each ternary subsystem and, if ternary experimental data are available, ternary
terms are included in Eq (5) and their coefficients are determined by optimization.

Before these coefficients can be used to estimate properties of the N-component system however, a rational method
of extending the Kohler, Muggianu and Toop approximations to multicomponent solutions must be devised. The
equations must reduce to the model equations chosen for each of the ternary subsystems, and should be completely
flexible in permitting any one of the 64 possible geometric models to be chosen for any one of the ternary

subsystems.

In our own database development work, we tend to shun the Muggianu approximation, for reasons discussed in our
earlier publication [5]. Hence, we mainly use either the Kohler (Fig. 1a) or Kohler/Toop (Fig. 1b) models. In our
earlier publication [5] we developed a general method for extending these two models to N-component solutions.
However, other researchers have evaluated and optimized many ternary systems using the Muggianu model, and we
would like to be able to combine their coefficients for some ternary subsystems with our own coefficients for other
ternary subsystems into one multicomponent database. Therefore, in the present publication we develop a general
and completely flexible extension of the Kohler-Muggianu-Toop geometric formalism to N-component systems
which permits each ternary subsystems to be treated by any of the 64 possible models. We begin with the binary
oy functions. Ternary terms are discussed in a later section.

The method is best illustrated by means of an example. Consider a 5-component system in which a choice of
models for the ternary subsystems has been made as illustrated in Fig. 3. For instance, the a2 function is given in
the 1-2-3 system by a Toop-type approximation at constant X, in the 1-2-4 system by a Toop-type approximation at
constant X; , and in the 1-2-5 system by a Kohler-type approximation..

We now define

gy =X, + > Xy (11)
k

where the summation is over all components k& of i-j-k ternary solutions in which ¢ is given by a Toop-type
approximation along lines of constant Xj. In the example of Fig. 3:

€ =X1+X; En =X+ Xy

Es =X €31 = X3 + X4

E =Xy En =X+ X+ X+ Xs

s =X Es1 =Xs + X4 (12)
En =X € =X+ X

€y =Xa+ X5 . =Xy

Ers =X Ess = Xs

E¢ =X Eas = Xg + Xt Xs

Eis =Xz + Xy Es; = X5 + X4

Eas = Xy Esa = Xs

The significance of these variables is as follows. The choice of a Toop-type approximation for ¢, in the 1-2-3 and
1-2-4 subsystems means that « 1o, the energy of forming (1-2) nearest-neighbor pairs, is assumed to remain constant
as component 1 is replaced by component 3 in the 1-2-3 ternary system and as component 2 is replaced by
component 4 in the 1-2-4 system. Hence, in the multicomponent system it is reasonable to assume that «;, should

remain constant at constant &;, = (X, + X3) and at constant &,; = (X, + X4) when all other mole fractions (Xs in



H

this case) are held constant. Similarly, o should remain constant at constant &5 =X; , and at constant

£y = (X 3+ X 4) when X, and X are held constant; and similarly for the other ¢; functions.

We see from Fig. 3 that in the 1-2-5 system a2 is given by a Kohler-type approximation. That is, a2 is constant
along lines of constant ratio X, X +X , ) in this subsystem. In the case of a3 , we see that this function is given
by a Kohler-type approximation in both the 2-3-4 and 2-3-5 subsystems where a3 is constant along lines of
constant ratio X3 (X, + X 3). For such functions ¢ which are given in all ternary subsystems by either Toop-type

or Kohler-type (but never Muggianu-type) approximations, it is thus reasonable to approximate ¢ in the
N-component system by replacing X; and [X; in Eq (3) or Eq (4) by the functions &;; /(f,-j +& ji) and & NS +¢ j,-)
respectively. This reduces to the correct expressions for a1, and a3 in all ternary subsystems in Fig. 3 as can be
verified by substitution of Eqs (12) into these functions.

The function ass is 3iven by a Muggianu-type approximation in the 1-3-5 system where it is constant along lines of

constant |X; — X5 ). Similarly, asi is given by a Muggianu-type approximation in the 1-2-3 and 1-3-5 systems

where it is constant along lines of constant (X =X 3) . For such functions ¢; which are given in all ternary
subsystems by either Toop-type or Muggianu-type (but never Kohler-type) approximations, it is thus reasonable to
approximate ¢; in the N-component system by replacing {X; — X ;) of Eq (4) by (f,-j =& ), or by replacing X;
and X; of Eq (3) by (1+§,-j &y )/2 and (1—5,-]- +& j,.)/z respectively. Again, this reduces to the correct

expressions or a3s and a3 in all ternary subsystems.

Finally, for the general case of function such as a;s and aps which may be given by Kohler-type, Muggianu-type
and Toop-type approximations in the ternary subsystems, we first define

k

where the summation is over all components & of ternary subsystems i-j-k in which ¢; is given by a Kohler-type
approximation. In the example of Fig. 3:

O12 =1-X5 GC24 = 1-X1—X5
O13 =1 025 = 1-X1
O14 =1 O34 =1 (14)
ois =1-X o35 =1
G = 1-X4-Xs os = 1-X-X3
o o | | &~ & &~ &
We then write o; by replacing X; and X in Eq (3) by the functions |1+ ———~| /2 and |1+ =———| /2
respectively, or by replacing (X ;i —X j) of Eq (4) by (fij - £ j,-) /U,j :
That is, for the case of a3 :
14+ 6127 %1 l 14+ 2217 b1 !
.s O’ o'
ap =, 2. 49h = = (15)
20 ;20 2 2



or ap =), 'L, (M} (16)

i20 012
These general expressions reduce to the correct expressions for g in all ternary subsystems. Note also that if & is
given by only Toop-type and Muggianu-type (but never by Kohler-type) approximations, then o 3=1. If o is
given by only Toop-type and Kohler-type (but never by Muggianu-type) approximations, then o; = S +Ei
By making these substitutions into Egs (15) and (16) it can be seen that the general equations reduce to these two
limiting cases which were discussed above.

Ternary Terms

If experimental ternary data are available, then these may be included in the optimization to give empirical "ternary
terms" in Eq (5). These terms are identically zero in all binary subsystems. Terms such as
ek
qinsX1X3 X3 (17
wherei>1,j>1and k> 1and qu% is an empirical coefficient, are generally used. However, such terms have little

theoretical justification. Furthermore, it is not clear how such ternary terms should be extrapolated into systems of
four or more components.

In our previous article [5] we proposed the use of ternary terms which are designed to represent the effect of a third
component, 3, upon the energy ai of the pair exchange reaction Eq (2). If aiz is given by a Kohler-type
approximation in the 1-2-3 ternary system as in Fig. 1a, then we proposed ternary terms of the form:

i J
X X
X, X, g | =S| | 22| X7 18
I Paa 3 (13)
where i 20, j>0and k> 1. Alternatively, this could be written in Redlich-Kister form as:
- X, - X5 ) o
XX, | * C1722 |k 19
142 112(3)[X1+X2J 3 (19)

where the Lyy3) are ternary coefficients.

If oy, is given in the 1-2-3 ternary system by a Toop-type approximation along lines of constant X as in Figs 1b
and 1d, then we proposed to represent the effect of component 3 upon ai, by terms of the form:

k
X X, g () -x Y| —— 20
142 ‘112(3)( 1) ( 1)1 (X2+XJ (20)
or in Redlich-Kister form as:
i B .
XX, | * 2X, -1 | —=3— 21
1 2LL12(3)( 1 )(XerXj (21)

In the previous publication we proposed, for the sake of simplicity, to use the ternary terms of Eqs (18) and (19)
also in the case where oy, is given by a Muggianu-type approximation. However, in order to give more flexibility,
we now propose, in such cases, to include terms of the form:

X1 X, ¥ Ligsy (X7 - X,) Xé] (22)

or alternatively:



i J
ik 1+X1'—X2 1~'X1+X2 k 23
X, Xy quz(g) ( 5 5 X3 (23)

Note that in any ternary system 1-2-3, three types of ternary terms may thus be included: terms giving the .eiffect of
component 3 upon a2 as in Egs (18) to (23); terms giving the effect of component 1 upon @p3; and terms giving the
effect of component 2 upon a3

For extending these ternary terms into the N-component system, we propose the following: o
(i) If aip in the 1-2-3 system is given by a Kohler-type or a Muggianu-type approximation, then the
following ternary terms may be included:

i j 7]
1+§12‘ $a1 1+§21" $12
o o- O' k‘__l

X1X, qg(a) 5 = 5 12 X5 (=& &) (24)

_ £a- &) _

i - k-1
or X1 X, kL12(3) { "‘1‘2‘;‘—’21— X3 (=&, - &) (25)
12

(i) If ai in the 1-2-3 system is given by a Toop-type approximation along lines of constant Xj, then the
following ternary terms may be included:

1+§12—§21 l 1+§21“512 ! . . el
ik o o
XX, quz(3) = = —ij (1 - 22 (26)
2 2 23 23
i \l' X X k-1 i
or X1X2 i L12(3) ( él‘z—:’“g—z—l‘ (’—'3—‘] (1 - “‘—2‘) (27)
O & 23

Eqs (24) to (27) reduce to Eqgs. (18) to (23) in the 1-2-3 ternary system. The justification for using the factor

k-1
Xy (=& - 521)1“1 rather than simply X é‘ in Eqgs (24) and (25) and the factor (ﬁ) (l - ;—Y—Z—J rather than
21 21

k
X
simply [X————_‘—.%(——) in Egs. (26) and (27) was discussed previously [S].
2 3

Discussion

The present generalization permits several geometric models to be combined in one multicomponent database. For
example, many ternary systems have already been evaluated/optimized with the Muggianu model. If future
optimizations of other ternary systems are performed with the Kohler or Toop models, then these can all be
immediately combined in one large multicomponent database. No re-optimization will be required. Hence, the fact
that certain subsystems have already been optimized with one model does not mean that other models cannot be
used for other subsystems.



(b) Kohler / Toop Model [2]

1

2 P 3
(d) Muggianu /Toop Model [4]

(c) Muggianu Model [3]

1

(e) A Weird Model (f) Another Weird Model

Fig.1: Some "geometric" models for estimating ternary thermodynamic properties from optimized binary data.



~ Clearly, for sublattice models such as the Compound Energy Formalism, the equations developed here apply to
each sublattice.

All the considerations and equations in the present article also apply when short-range ordering is taken into

account by using the modified quasichemical model in the pair approximation [6]. In this model, the excess Gibbs
energy in a binary system is given as gL = ay, X, , where Xip is the fraction of nearest-neighbor pairs which are

(1-2) pairs. However, the energy change aj, of the pair exchange reaction (2) in a binary system is expressed as a
polynomial just as in Eqs (3) or (4). The configurational entropy of mixing is then written as a function of the
concentrations of the different nearest-neighbor pairs, and the equilibrium pair fractions are calculated by
minimizing the Gibbs energy [6]. For estimating ternary properties from the binary coefficients, the values of the
c-functions in the ternary solution are assumed to be equal to the values qiaw , Qa3 and 0s1( in the binary
solutions according to the geometric models as in Fig. 1.

The equations derived in the present article are for the integral excess Gibbs energy. The partial excess Gibbs

energies of the components can easily be calculated therefrom. A particularly useful form of the equation for
calculating the partial properties from the integral property was discussed previously [5].
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5-Component Solution

Fig.3: A 5-component solution showing the geometric models chosen for all ternary subsystems.



