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SUMMARY

A system of semi-empirical equations has been developed for the ana-
lysis of the thermodynamic properties of molten slags. The equations take
into account the concentration and temperature dependence of the solution
properties of ordered systems in a general way which avoids the necessity
of a detailed structural model. Since the form of the equations is based
upon the known physical properties of ordered systems, the reliability of
interpolations and extrapolations is greatly enhanced. For binary systems,
these equations were coupled with an optimization computer program to ana-
lyse all reliable thermodynamic data, including phase diagrams, Gibbs ener-
gies and enthalpies of formation of compounds, activities, enthalpies of
mixing, entropies of fusion, miscibility gaps, etc. In this manner, data
for several binary slag systems have been analysed. In the present arti-
cle, results for the Mg0-Si0, system are presented.

The resulting equations represent all the data, including the phase
diagram, within or virtually within experimental error limits. This type
of analysis is useful for correlating, smoothing and storing diverse data
sets and for purposes of interpolation and extrapolation. Furthemmore, it
is the first step in the analysis of ternary and higher-order slag systems
as is discussed in another paper in this Symposium.

Work performed under the auspices of the U.S. Department of Energy



Introduction

In recent years much progress has been made im the development of
techniques of computer-assisted thermodynamic analysis i{n binary and
multicomponent systems. In these techniques, all available phase diagrem
and thermodynamic data for a binary system are eimul taneously analyzed im
order to obtain & set of equations describing the thermodynamic properties
of the phases as functions of temperature and composition. Generally, for
binary liquid solutions, the enthalpy of mixing and the excess entropy are
expressed as polynomial expansions in the mole fractions, X; and Xy, of
the components:

3
AH = X1X2 (ho + h1X2 + hzxg + h3X2 ¥ oeee) [1]
E ‘ 2 3
s* = X1X2 (sq + slxz + 32X2 + 53X2 + ena) [2]

where the coefficients hy and sy are obtained from the analysis of the
available data. In this way, the thermodynamic and phase diagram data can be
critically assessed and rendered thermodynami cally self-consistent. The
phase diagram can subsequently be calculated by computer from the thermody-
namic equations. Hence, all the thermodynamic properties as well as the
phase diagram can be represented and stored by means of a small set of
coefficients., Furthermore, the analytical representation permits the

data to be interpolated and extrapolated. In particular, it is often
possible to estimate the thermodynamic properties and phase diagrams of
ternary and higher-order systems from the assessed parameters for their
binary sub-systems.

These technique have been applied to a large number of alloy and ionic
salt systems. Much of this work has been published in the Calphad Journal
(1) which is devoted to this type of calculation.

A difficulty arises when a system contains a liquid phase which exhibits
strong structural "ordering" about a certain composition. In a binary
liquid phase with ordering, the enthalpy of mixing tends to exhibit a
negative peak near the composition of maximum ordering, while the entropy
of mixing tends to have the shape of the letter "m" with a minimum near this
composition. This is shown schematically for various degrees of ordering
in Fig, 1 where the composition of maximum ordering is at 50 mol 2. Such
behaviour is observed for many binary liquid alloys formed between a rela-
tively electropositive and a relatively electronegative element such as
Cs-Au, Mg-Bi and Li-Pb where maximum ordering is observed near compositions
corresponding to CsAu, Mg4Bij and Li,Pb. The behaviour is also observed
for many binary halide systems such as AC1-AlCl3 (A « alkali) where ordering
is about the composition AAlICl,, AC1-MC12 (A = alkali, M = Mg, Co, Ni, etec.)
where ordering is about the composition AgMCl,, and LiF-BeFy where ordering
is about the composition LijBeF;. Many other examples could be cited,

In binary silicate systems MD-8i0; (M = Ca, Mg, Pb, Fe, Mn, etc,),
ordering is observed about a mole fraction of §10,, 00 1/3. This
corresponds to the composition M3S8104, and this ordetiné is generally
attributed to the formation of orthosilicate ions.

Enthalpy and excess entropy functions as in Fig., 1 for ordered systems
are not well represented by polynomial expansions as in eqs [1, 2], &
very large number of terms (at least 10 or 20) are required to give an
adequate representation, and then these equations are quite useless for
interpolating or extrapolating, . \
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Fig. 1:

(kcal/mol)

AH

AS (cal /mol-K)

Enthalpy and entropy of mixing of a binary system for different
degrees of ordering about X, = = 3. Curves are calculated from
the modified quasichemical theory at T = 1000 °C with z = 2 for the
constant values of w (kcal) shown and with n = 0.
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To represent the thermodynamic properties of ordered systems we require
a set of equations based upon a physical model which accounts for the
ordering and which thus gives the proper characteristic shape of the AH and
4§ functions. '

In the case of molten silicate systems, many physicel models of either
the "polymeric" or "sublattice" type have been proposed which could, in
principle, be used to this end. However, all of these models are much more
detailed and mathematically complex than is necessary or desirable for the
present purpose. We are not seeking s detailed description of the molecu-
lar structure of the solutions but only a set of equations which takes
account of the ordering in a general way so that only a small set of
adjustable coefficients are needed and so that interpolations and extra-
polations can be made. Furthermore, besides seeking a formalism that is
an simple as possible, we also wish it to be as general as possible so
that, for instance, the same formalism as is used for ordered liquids can
also be applied to wnordered liquids (such as Ca0-Mg0). It would also
be desirable to have one formalism applicable to ordered alloys, halides,
ellicates, etc. rather than a different model for each different class of
svstem,

In the present report, a modification of the quasichemical theory
ol Guggenheim (2) for short-range ordering is proposed which satisfies
the above requirements.  In a binary system with components "1" and "2,
the "1" and "2" particles are considered to mix substitutionally on a quasi-
lactice. ‘The relative amounts of the three types of nearest neighbour
pales (namely, 1-1, 2-2 and 1-2 pairs) are determined by the energy change
associated with the formation of two 1-2 pairs from a 1-1 and a 2-2 pair
ACCOYdinS to:

(1-1] + [2-2] = 2[1-2] £3]

1t this energy change is zero, then the solution is an ideal mixture. As
this energy change becomes more and more negative, the formation of 1-2
pairs is fawured. As a result, the entropy and enthalpy functions take
ou the characteristic shapes of Fig. 1.

In the present work, the basic quasichemical theory is modified in
order to give the correct entropy expression even for highly ordered sys-
tems. A modification is also made to permit ordering about any desired
composition to be treated. Finally, the energy change for reaction [3]
is introduced as a function of composition with adjustable parameters.

In a binary silicate melt such as M0-Si07, one might identify the "1"
and "2" particles with M and Si which mix on a cationic quasi-lattice. The
tendency to ordering through the preferential formation of 1-2 pairs could
then be identified with the formation of orthosilicate ions and the resul-
tant creation of second-nearest neighbour M-Si pairs. (At the orthosili-
cate composition, MyS5i04, a completely ordered solution could be considered
to~ consist of omnly M2t cations and Si0%- anions. This is equivalent to
saving that there are only M-Si and no Si-Si .or M-M second-nearest neigh-
bour pairs.) A 2-2 pair would be identified as a Si-Si second-nearest-
aeighbour pair joined by an "oxygen bridge", and a 1-1 pair is an M2*-yM2*
second-nearest-neighbour pair separated by an 02~ ion,
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However, it must be stressed that the modified quasichemical theory as
presented here is not intended as & proper theory of silicate structure but
only as a mathematical formalism which has the advantages of simplicity
and generality and which appears to have the characteristics required for
relatively reliable interpolations and extrepolatioms.

In the following sections, the modified quasichemical theory will be
developed and applied to the Mg0-5i02 system as example. The theory has
also been applied to other slag systems with equal success. Results will
be presented elsewhere. The extension of the theory to ternary and higher-

order systems and its ability to predict the properties of temmary solu-
tions from the properties of the binmary sub-systems will be discussed in

another paper in the present Symposium.

The modified quasichemical theory

We consider a binary system with components "1" and "2" in which "1"
and "2" particles mix substitutionally on a quasi-lattice with a constant
coordination number z. There are three types of nearest-neighbour pairs
(namely, 1-1, 2-2 and 1-2) with "pair bond energies" €;;. The total num-
ber of such pairs per mole of solution is N°z/2 where N® is Avogadro's
nunber, We consider the formation of two 1-2 pairs from a 1-1 and a 2-2
pair according to reaction [3]. The enthalpy change for this process is
(2512-511-522), Multiplying by N°2z/2, we define a molar enthalpy change,

ws
ws=L2 (3¢ e -c

-2 12 "11 "22
We can also define a molar non-configurational entropy change, n, associa-
ted with reaction [3] as:

2 ) [4]

n = L =0,4=0,,)
-2 12 "11 "22° .

where 0y4 is the "pair bond non-configurational entropy'.

(20 (5]

Let n. and n. be the number of moles of "1" and "2" particles. For one
mole of so}ution, (nl + nz) = 1. The mole fractions of 1 and 2 are defined
as X} = ny/(n) + np) = 1-X3. Let myy, npj and njy be the number of moles
of each type of pair in solution. The fraction of pairs which are i-j
pairs is defined as:

Xjy = myy/(ngy £ 0y, + 0y Y

From the mass balance it follows that:

zn, = 2ny, * 0y, ‘ [7]

z0y = 2y + By (sl
and that

2% = 2X33 + X, {91

2X2 = 2X22 + X12 f10]
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When components "1" and "av &re mixed, 1-2 pairs are formed at the
eéxpense of 1=1 and 2-2 paire. Im the model, the enthalpy of mixing, AH,
is then given by summing the Pair bond energies:

0H = (x12/2)w (11]

Similarly, the non-configurational excess entropy of the solution is given
by:

sE(non-config) - (x12/2)” {12]

must calculate the multiplicity of a solution containing n.., n,. and n
moles of 1-1, 22 and 1-2 pairs. This problem, which is equivalent to

the Ising model, has not been solved in three dimensions. In the approxi-
mate solution proposed by Guggenheim (2), we first consider that the pairs
are distributed tandomly over the N°z/2 positions to give a molar entropy

of mixing of: ’

Rz
AS = = 5 (x.ulnx11 + xzzlnx22 + xlzlnxlz) [13]

This, of course, overcounts the number of possible configurations. 4

correction factor is calculated from the fact that when the solution is

completely random: X;1 = 2, X, = X¢, 9 = 2X.X,_, and AS should equal

=R( lnxé + X,1nX,), There ore, the approkimate configurational entropy
n

of mixi eéxpression proposed by Guggenheim is:
config Rz X1 X2 %12
AS = R(XllnX1 + x21nx2)v- 3 (Xllln-izz + Xzzln §;§-+ Xlzln 2X1X2)
(143

Hence, the total molar excess entropy (configurational plus non-configura-
tional) of the solution is given from eqs (12, 141 as:

E Rz X1 %32 X12
§ = - 5 (xllln }IE + X221n ;;E + Xlzln Ei;i;) + (X12/2)n [15]

The equilibrium concentrations of the various pairs are given by mini-
mizing the Gibbs énergy at constant composition:

d(AH-TAS)/dX12 =0 [16]
This gives: X122 '
X1 %,

Eq [17] resembles an equilibriwm constant for reaction [3]. It is for this
reason that the model is called "quasichemical”,

= 4o~ 2(w-nT) /zRT [171

Substitution of eqs [9, 107 into eq [17] gives
X12/2 = 2X1X2/(l + E) [18]

where €= (1+ axx (2("D/2RT_ )3 [19]
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For & given value of (w-nT) et & given éonpoaition X3, eqe [18, 19] give
X} end eqs (9, 10] then give X;; and X37. Substitution into eqe [11, 15]
then gives AH and sE,

If weo 0 and n = 0 then AH « 0 and SE < 0 and the solution is ideal.
When w and n are small, SE = 0 and Xj5 = 2XX;. From eq [11] then,
AH = X1X7 w. That is, the solution is reguler. As (w-nT) is made progressi-
vely more negative AH asssumes & negative peaked form as inm Fig. 1, and AS
assumes the "m-shaped" form of Fig. 1. However, for large negative values
of (w-nT), the configurational AS as calculated by eq [14] assumes quite
large negative values sround Xj = Xy = 4.  This is clearly incorrect since
when (@-nT) = -=, perfect ordering will result at the composition Xj = Xp =14
with all "1" particles having only "2" particles as nearest neighbours and
vice-versa., Hence, the configurational 4S should be zero at this compo-
sition. The fact that the calculated configurational 4S is not zero is a
result of the approximate nature of the entropy expression [14]. If we
solve the preceding equations for (w-nT) = -=, we obtain for the configura-
tional entropy of mixing at X; = X, = 3

A8 = R(3 - 1)1n [203
This will only be equal to zero when z = 2.

Therefore, for highly ordered systems, the model gives the correct
entropy expression only when z = 2. This can be more fully understood if it
is realized that eq [14] with z = 2 is, in fact, the exact solution of the
one-dimensional Ising model with no approximations. Consider a one-dimen-
sional "necklace" of Nj particles of type "1" and Ny particles of type "2"
with Nij, Ny, and Ny, being the numbers of 1-1, 2-2 and 1-2 pairs. In order
to obtain an expression for the entropy, we first place the Nj particles
of type "1" in a ring and choose at random (N1'“1;) of the Nj spaces
between them. This choice can be made in ) = Nj./(N1j:(Nj-Njj)!) ways.

We now place ome particle of type "2" in each of these chosen spaces.

This leaves Ny - (Nj - Njj) = Ny particles of type "2". These are all
placed into the (Nl - Nll) chosen spaces with no restriction on the number
in each space. This can be done in 2, = NyI/(N,,:(N,-N22):) ways since
(N;-N37) = (Ny-Np7). The entropy is %hen givenzgy

As = fk 1in 9192 - [21]

where k 1s Boltzmann's constant. Solving via stirling's approximation for
one mole of particles gives an expression for AS identical to that of
eq [14] with z = 2,

Hence, the model as presented is exact in one-dimension (2 = 2). Thus,
for highly ordered systems, the correct entropy is only approached by the
model when z = 2, For solutions which are only slightly ordered (sE = 0),
it may be argued that the approximate three-dimensional expression is super-
ior to the exact one-dimensional expression and so a larger values of z
should be used. However, for the sake of consistency and in order to permit
the parameters of several binary solutions to be easily combined for multi-
component solutions, it is proposed here that the one-dimensional model be
used with 2z = 2 in all cases.
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Fig. 1 was calculated from the model as presented sbove at T = 1000 °C
with 2 « 2 for the values of w shown and with n = O.

Fixing the composition of maximum orderig;

The next modification to the model concerns the composition of maximwm
ordering. As presented sbove, the model alvays gives maximum ordering at
X = X3 = §. In order to make the model general, we must be able to choose
the composition of maximum ordering to correspond to that which is observed.
For instancezin the biniry system Mg0-5i0,, this composition is observed

near ngO"j’ xSioz =g

The simplest means of accomplishing this is to replace the mole frac-
tions X%Eand X, in the preceding equations by "equivalent fractions", Y;

and Y9 defined by:
5 %

LT Eper, 2t 2%, *b%, (223
where a and b are numbers chosen so that Yl = Y, = 3 at the composition of
maximum ordering. For example, in the Mg0-510) 'system, by choosing a and b
such that a/(a+b) = 1/3 (for example, by choosing a = 1, b = 2) we obtain
Y=Y, s % when = 2/3 and X3 = 1/3. Formally, in the model, we let the
coordination numbers of "1" and "2" particles be (az) and (bz) respective-
ly. Eqs [7-10] then become:

zanjy = 2“11 + u12‘ [23]
zbn2 = 2n22 o, [24]
2Y1 = 2X11 + x12 [25]
2Y2 = 2X22 + X12 [26]

The molar enthalpy of mixing and molar excess entropy (per mole of compo-
nents "1" and "2") become:

AH = (ax1 + bxz)(x12/2)w [27]
E Rz X1y X7 X9
§$" e = 3 (a.X1 + bxz) (Xllln 3 + Xzzln —5 t Xlzln Z—Y'—Y—-)
Y, Y, 172 [28]

+(axl + bxz) (X12/2)n

1 and YZ.

It is important to note, however, that in the ideal entropy term we
do not replace Xl and X2 by Y, and Y That is, we retain the expression:

1 2°
astdeal _ ~R(X 1nX; + X,1nX,) [29]

Eqs [18, 19] apply, but with X, and X, replaced by Y

in order that when (w-nT) = O the equations reduce to the ideal solution
equations, :
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In order to choose the composition of maximum ordering, it is oanly the
ratio a/(a +b) which must be fixed. For example, the choice a @ 2, b = &
or the choice a =1, b= 2 will both give Y, « Y, = & at X, = 2/3. As
before, however, we may apply the additionai con%ition that 4S = 0 when
w = == at the composition of maximum ordering (Yl @ Yz = §). This condi-
tion is satisfied when: :

bz = = (In(r) + (_].;_r) in (l-r))/ln 2 (301

a = br/(1l-v) [31]

wvhere r = a/(a+b) is the ratio required to fix the composition of maximum
ordering.

For the Mg0-Si0, system where r = 1/3, if z « 2 then from eqs [30, 31]:
a=0,69 and b = 1.3%.

Composition dependence of w and n

The final modification to the quasichemical model concerms the composi-
tion dependence of w and n. Although constant values are sufficient to
represent the main features of the curves of M and AS for ordered systems,

. for a quantitative representation of the thermodynamic properties of real

systems it is necessary to introduce an empirical composition dependence.
In the present case we have chosen simple polynomial expansions in the
equivalent fraction YZ: ‘

W= w + oY, + mng + m3‘I; t ees [32]
n=ng tn¥,+ nng + “ZY; t oo (33]

where the temperature- and composition-independent coefficients w, and
are chosen empirically to give the best representation of the available
experimental data for a system. A computer program has been written to
perform such "optimisations” via a least-squares technique. This program
will be described elsewhere.

It may be noted that when (w-nT) is small, then the excess configura-
tional entropy is also small and Xjp3 = 2 Xz. (For simplicity, let a = b =
1 so that X, = Y, and X, = Yz). In this case:

1 1 2
AH = xlxz (v, + “’1x2 + “’zxi + cee) [34]
E ,
s = xlxz (no + nlxz + nzé t oeeo) [35]

These equations are identical to eqs [1, 2].

That is, in the limit as the solutiom approaches ideality, the present
model approaches the simple and common representationm of excess properties
by polynomial expansions and the coefficients w; and ny become numerically
equal to the coefficients of these expansions.
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Partial molarp properties

Expressions for the partial molar Gibbs energies of the components are
obtained by differentiation:

X X
- ag 11 _ 12 3!:»—3'1'2
4G, & RTlng) = R‘I’lnxl + 5 RTla —[“1 a(—-—z ) Yz ( B, ) [36]
- LH X22 X12 3(w=nT ,
46, = Rnnaz = RTlnxz +3 RT1n Wz + b( 5 ) 1{1 ( 3, ) [37]

where 8 and a, are the activities of the components.

Application to the Mg0-5109 System

The phase diagram of the Mg0-5i0, system is shown in Fig. 2. The
experimental diagram is indicated by the dashed lines and by the invariant
temperatures and compositions in parentheses. The experimental diagram
is taken mainly from (3) as reported by (4). The liquid immiscibility gap
is from (5), and the solidus and solvus for the solid Mg0 phase are from (6),

The activity of §10, as measured by (7) over a limited composition
range at 1600°C is shown in Fig, 3,

The Gibbs energies of fusion of $i0, (cristobalite) and Mg0 are taken
from data tabulated by (8):

-1
Acgusion(smz) = 2290 - 1.1473T (cal mol ) [38]
fusion (M80) = 13539 + 16.9321T + 0.3755 (10”3 T2
fusion = ‘ ¢

- 2,7930 TInT - 0.13%67 (10%) T! (cal mo1™l)  [39]

where T = kelvin.

Gibbs energies of formation of the solid compounds Mg,510; and MgSi0
are tabulated by (9). Extrapolation of these data to the melting points
of the compounds and combination with eqs [38, 39] then gives the Gibbs
energies of mixing of liquid Mgo and liquid 8§10y at these two points:

3

iMgO (L) + 13102(1) = 5()455103) (¢3) 8Gy5690c = =7305 cal [40]
Zugo(t) + 1810,(0) = (4875104 (2) 86} gogoc = ~8383 cal [41]

(The congruent melting point of Mg510, has been estimated at 1562°C, or 5°
above the peritectic.)

All the above experimental data were used as input to the least squares
optimisation program in order to find the coefficients of eqs [32, 33) which
best reproduce all the data, The resultant 6-coefficient expression is:

3 5
(w-nT) = (-33976 + 6.0T) + 53760 YSiOZ 107429 YSiOZ 2]
7
+ (126025 - 20.0T) YSiOZ (cal)
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mental from (3) as reported by (4) except for liquid immiscibility
gap from (5) and periclase solidus and solvus from (6).
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where MgO and Si0, are components "1" and "2" respectively. Values of 2z = 2
as= 0.69 and b = 1.38 were used.

A plot of the calculated Gibbs energy of mixing at 1600°C is shown in
Fig. 4. The sharp negative peak at Xgjg, = 1/3 is evident. A plot of
(u=nT) from eq [42] at 1600°C is shown ia Fig. 5. The function remains
nearly constant over most of the compositiom range, but must rise sharply
near Xgi0, = 1 in order to reproduce the l1iquid immiscibilicy gap. It is
for this feason that the high powers of YSiOz are required in eq [42].

The calculated phase diagram is compared with the experimental diagram
in Fig. 2. The solid Mg0 phase (periclase) was treated as a Henrian solu-
tion with:

ernySioz = constant = =3500 (cal.) (43]

(where y is the activity coefficient) chosen so as to reproduce the measured
(6) solubility at the eutectic. As the entropies of fusion of the two
compounds have not been measured, the following values were chosen so as to
fit the measured phase diagram:

1

o -
BSe ion (Mgs103) 5.46 cal K [44]

]
ASgysion (M825104)

7.05 cal K ! [45]

The calculated and experimental diagrams agree nearly within experimental
error limits. The eutectic calculated at 1826°C is slightly too low, possi-
bly because the solubility (6) of MgO in forsterite of about 17 was neglec-
ted in the calculations.

Calculated and measured silica activities are compared in Fig. 3. If
the composition of silica saturation is displaced by 1 mol %, agreement
is nearly exact.

Finally, the Gibbs energies of mixing at the compound melting points
were calculated as -7380 and -8312 cal mol~l which compare very well with
the experimental values of -7305 and -8383 cal mol~l in eqs [40, 41].

ok 1600°C
S ol
oL
—= -0}
= a0k
‘ - | 1 1 1 1 1 I | f
§ 300—"92 04 06 08 1.0

MgO Si0,

Mole fraction Si0O,p

Fig. 5: (w-nT) at 1600°C for liquid Mg0-510, slags from eq [42].
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Conclusions

In order to provide a simple, versatile and general set of equations
for representing the thermodynamic properties of structurally ordered 1i-
quid solutions, the quasichemical theory for short-range ordering has been
modified. One modification permits the correct entropy expression to be
obtained for highly ordered Systems. A second modification allows the
composition of maximum ordering to be fixed, and the third modi fication
introduces an empirical composition dependence so that experimental data
can be fitted with precision. All available experimental thermodynami ¢
and phase diagram data on a binary system can be analyzed simultaneoualy by
computer by a least-squares technique to obtainm the optimum values of the
empirical coefficients of the model. The model is well-suited for ordered
systems, but for systems which are close to ideality the equations become
identical to simple polynomial expansions of the excess properties in terms
of the mole fractions. Hence, the model cap also be used for non-ordered
systems,

The generality of the model permits it to be used for a wide variety of
ordered systems (alloys, salts, oxides, etc.). 1In particular, it is well-
suited to molten silicate systems. For the Mg0-Si0y system, all available
experimental thermodynamic data as well as the phase diagram can be repre-
sented with only 6 empirical coefficients,

The extension of the model to the analysis and prediction of the ther-
modynamics of ternary and higher-order silicate systems is discussed in
another paper im this Symposium,
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