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Abstract—The thermodynamics of the spinel and rock-salt structure phases of the system Co-Fe-Mn-O
at 1200°C have been investigated with regard {o their relation to the phase equilibria between these phases.
To describe the thermodynamics of the spinel phase, a sub-lattice model, based on the cation distribution
of 2+ and 3+ ions between octahedral and tetrahedral sites has been used. In the modelling, the influence
of deviations from stoichiometry has been taken into account for the rock-salt structure phase. A set of
thermodynamic parameters has been derived which allows the calculation of the compositions of the spinel
and rock-salt structure phases at equilibrium as a function of oxygen partial pressure at 1200°C. The model
also permits the calculation of the cation distribution in the ternary spinel phase at all compositions.
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1. INTRODUCTION

By modelling the thermodynamic properties of
solutions, it is often possible to gain insight into
their structure. At the same time, the models permit
a consistent means of smoothing, interpolating and
extrapolating data. Phase diagrams are a form of
thermodynamic data, since they represent the con-
ditions for minimum free energy of the system. In this
paper, we shall propose models for the oxide phases
with the rock-salt and spinel structures in the
Co-Fe-Mn-O system at 1200°C arid a hydrostatic

. préssure: of 1-atm: -By wiinimizing the free.eneigy. of: -

the system, the phase stability limits of each phase
can be calculated from the models and compared to
experimental values. The free energies of the oxide
phases depend on their cationic composition and on
their oxygen content. For the determination of free
energy minima it is critical to formulate appropriately
the free energy of each phase as a function of its
chemical composition. For spinels in which ions can
occur in different coordinations, this requires that the
dependence of the free energy on the internal cation
distribution also be formulated.

Oxides with the rock-salt structure are based on a
face-centered cubic lattice of oxygen atoms in which
all octahedral interstices are filled by cations. Oxides
with the spinel structure are based on the same

oxygen packing. However only 1/2 of the octahedral
interstices and 1/8 of the available tetrahedral inter-
stices are filled by cations. Details of the spinel
structure are reviewed, for example, in [1]. At thermo-
dynamic equilibrium, cations and point defects are
distributed among the different coordinations in such
a way that the free energy of the crystal is minimized.
Different factors which are sensitive to this distri-
bution contribute to the crystal’s free energy [2].
First, the crystal’s lattice energy, including the
Madelung energy -and a repulsive energy term, is

- important. Second, factors such as crystal field siabil-
-jzation,.ligand. field stabilization;.and the Jahn-Teller. . -

B T

effect cannot be ignored, especially if transition metal
cations are present. Lattice polarization may also
have to be considered, especially in view of fast
electron exchanges between transition metal cations.
Ordering on individual sub-lattices may also cause
energy changes. Furthermore, in general, the oxygen
sub-lattice is not densely packed. As a consequence,
the lattice parameter, a, and also the so-called oxygen
parameter, u, which is used to denote exactly the
positions of oxygen ions (see {1, 3]) depend on the ion
distribution. In principle, this has to be taken into
account when free energy changes of different origin
are formulated and/or calculated.

Unfortunately, it is extremely difficult to formulate
quantitatively the contributions to the free energy
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of spinels resulting from the factors discussed above.

To date, this problem has not been satisfactorily

solved. Different models have been proposed to treat
quantitatively the cation distribution in spinels.
However, none of them takes all these factors into
account. Therefore, all models proposed so far [4-14]
have only limited applicability, depending on the
specific system considered and on the factors ignored
by the specific model.

The exchange of differently charged cations be-
tween the octahedral and tetrahedral cation sites
changes the charge distribution. Due to the nondense
nature of the oxygen packing, the interionic distances
vary if cations of different sizes are exchanged
between different types of sites. Both charge distri-
bution and changes in interaction distances affect
the value of the electrostatic energy {15]. Hence the
lattice energy (with the largest contribution from the
Coulomb interactions) changes with the distribution
of cations. If this variation is small compared to the
contribution from the stabilization of ions due to
crystal field effects, the latter effect determines the
equilibrium distribution of ions. Models emphasizing
only lattice energy considerations [9-14] and some
based exclusively on crystal field stabilization effects
[5-8] have been proposed to model the cation distri-
bution in spinels. The exact calculation of lattice
energies is a problem due to a lack of compressibility
data for quantifying repulsive interactions, and the
great difficulty involved in quantifying the effect of
lattice polarizations and of energy changes due to
ordering of cations on different sub-lattices. The
distribution of ions with different valence states is
governed both by the exchange of ions between the
two sites and electron exchange reactions between
jons. If compounds or solid sclutions contain tran-
sition metals ions with different charge states in
comparable concentrations, fast electron exchange

~ may affect the free energy “of mixing. In such cases, "
v pothi-of the aforefnentioned iodels may-fallshort

of an appropriate physical picture of the cation
distribution.

Early attempts to model cation distribution were
based on treating it as a simple chemical equilibrium

between ions on octahedral and tetrahedral sites [4].

Enthalpies for the exchange of ions between the two
sites, derived from empirical site preference energies
[5~7] of individual ions, were used to model cation
distributions. By assuming the exchange enthalpies to
be independent of the concentrations of ions on each
of the sites, the model was extended to binary spinel
solid solutions. With this principle, and assuming the
non-configurational entropy to be small, Navrotsky
(8] and Pelton et al. [16] modelled cation distributions
in A;0,~B,0, solid soluuons, where A, B =Co, Fe
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and Mn. In a later study, O'Neill and Navrotsky [9]*
added a semi-empirical nonlinear term to the vari-
ation of enthalpy with cation distribution. With a few
exceptions, the cation distribution of many spinels
and of spinel solid solutions can be fitted by this
empirical model. Further extensions have been pro-
posed, based on a second degree Taylor series expan-
sion, to model the trends in the cation distribution of
multicomponent systems [12-14]. However, proof is
lacking that these models appropriately take into
account the physics governing the cation distribution.
In this study, the free energy dependence of the
Co,0,~Fe,0,~Mn; O, spinel solid solution on com-
position is modelled on the basis of the distribution
of different cations with 24+ and 3+ valence states
between octahedrally and tetrahedrally coordinated
cation sites. In view of the complexity of the system
considered and the open questions with regard to the
appropriate modelling of the cation distribution in
spinels, a simple semi-empirical approach has been
selected which provides a set of equations useful for
modelling the cation distribution. It is assumed that
the distribution of ions is governed by the difference
of site preference enthalpies of ions between tetra- .

hedral and octahedral coordination. This implies that

the enthalpy of disordering is considered to be inde-
pendent of composition and sub-lattice population.
Deviations are formally treated by introducing
empirical excess enthalpies. This approach has been
already used to model the cation distribution of
the constituent transition metal oxides and of their
quasi-binary solid solutions of the system considered
here [16]. In the present article, this approach is
extended to quasi-ternary spinel solid solutions. For ~
this purpose, a so-called sub-lattice model [17-20],

originally developed for modelling molten salt sol-

utions, has been modified. In this model, spinel solid

solutions are considered as a mixture of spinel-like, .
pseudo-components, .involving two octahedral and ’

ohe" fetrahédral: cation sife~pers moleculeic The Afreg : .« i bunn ot

energy of the system is obtained by summing the free
energies of the pseudo-components and the entropies
of cation mixing on the octahedral and tetrahedral
sub-lattices. Nonstoichiometry in the spinel phase is
assumed to have a negligible effect on the cation
distribution and overall free energy.

Once the free energies of the spinel and rock-salt
structure phases have been formulated as a function
of composition, the free energies of combinations of
these two phases as a function of composition and
oxygen activity can be minimized to determine the
compositions coexisting at different oxygen partial
pressures. Finally, through comparison with exper-
imental results, adjustments of the model in the form
of empirical excess energy parameters, can be made.
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2. EFFECT OF NONSTOICHIOMETRY ON THE
FREE ENERGY OF OXIDE SOLID SOLUTIONS

. The free energy.of a nonstoichiometric phase is a
function of defect concentrations and composition.
When the equilibrium between two phases with large
differences between their degrees of nonstoichiometry
is considered the point defect formation in the more
nonstoichiometric phase has the most significant
effect on the equilibrium. .

The system considered here contains three different
transition metals: Co, Fe and Mn. Their stable oxides
with the spinel [21-23] and rock-salt structures
[24-27] are well known to be nonstoichiometric. For
the present calculation of phase equilibria between
(Co, Fe, Mn), _,O and (Co, Fe, Mn),_;0,, in prin-
ciple the degrees of nonstoichiometry of the coexist-
ing spinel and rock-salt structure phases must be
known. However, the deviation from stoichiometry
in the spinel phase & can be ignored in the calculations
because the §-values are sufficiently small. Only A in
the rock-salt structure phase is important. From the
literature it is well known that the deviation from
stoichiometry, A, in Fe,_,O varies between about
0.05 and 0.15 at 1200°C [24]. Investigations of the
nonstoichiometry in Mn, _,O have yielded a range of
deviation from stoichiometry from ~ 0 to about 0.06
at 1200°C [25). In Co,_,O the maximum deviation
from stoichiometry at 1200°C is about 0.01 [26, 27].
To determine quantitatively the effect of the nonsto-
ichiometry on the free energy of (Co, Fe, Mn),_,O
with varying oxygen activity and cationic compo-
sition, A must be known in the entire stability region
of the rock-salt structure phase. Unfortunately, such
data are lacking. Therefore, simplifying assumptions
must be made. The simplest approach of this
nature has been reported in [16]. There it has
been assumed that variations in the oxygen con-
tent, given by 1/(1 —A), in Mn,_,0 and Co,_,O
are _negligible compared- to -that in Fe,_,O

oot 1200°Cs Furthermores - it was  assumed Ahat - . ol S j o Ad]naoz‘(s) S
ag,;

in quasi-binary phases the "oxygen content in
(Fe,A,_,),-aO =y - (oxygen content in Fe,_,0) at
constant temperature and oxygen activity, and
analogously, in quasi-ternary systems the oxygen
content in (A,Fe B, _,_,),_,O=y-(the oxygen
content in Fe,_,0). However, recently it has been
shown for the quasi-binary phases (Fe,Mn,_,),_,O
and (Co,Fe,); .40 (x+y=1), that the oxygen
content is not exactly linearly dependent on y,
and that the effect of this nonlinearity on the free
energy cannot be neglected if accurate phase diagram
calculations are desired [28, 29].

Consider 1/(1 —A) moles of the binary solid
solution (Fe,A;_,)1-,O. The Gibbs energy of this
solution is:

s A
Gaozzy.#Fco""(l—y)'PAO'*‘m'HO}
=y ot (1 —) tho

+R-T-[y-lny+(1-y) In(l —p)]
A G m
= n) P Ve

where g0 and 1,0 are chemical potentials, u$.o and
pho are their values in Fe;_,O and 4,_,0 at a
constant oxygen activity, dq, (= Po,/P°; P° = 1 bar),
and Gg, is an excess Gibbs energy. go,(=2p,) is the
chemical potential of O, (and p, that of O).

A simple expression describing the deviation from
stoichiometry, A, in Ee,_,O as a function of oxygen
activity and temperature is available [30]:

A
1 log aoz_'-; - A‘

T2oAT T 4

24
T t4

Xo

@

with 4, = —35,658 K, A,=128.48, 4;=—10,096 K
and A,=58.373. This expression can be used with
the Gibbs—Duhem equation, applied to the two-
component system consisting of FeO and excess
oxygen, to calculate %, in Fe,_,O as a function of
oxygen activity:

Xo " dpg+ Xpeo " dpfo =0 ©)]
X A
dpfeo= ——>-po=—7—="do (¥
XEeo 1-A
R-T

Ilfrco(agz) - #freo(aéz) = —T

1-A

If we select Fe,_,O in equilibrium with Fe as the
standard state, the lower limit of the integral becomes
ag(Fe/Fe, _,0) and pfo(ap) =0. This permits the
calculation of the activity of FeO at any oxygen
activity with respect to the selected standard state
by substitution of eqn (2) into eqn (5). It is worth
noting that for the calculations it is necessary to
extrapolate eqn (2) to oxygen activities beyond that
of the Fe,_,O/Fe;_;0, equilibrium. An analogous
approach is also used to calculate pf;,0(ap,). The
dependence of A in Mn,_,O on ag, is obtained
by using experimental data reported in [25]. For
Co,_,0, recent data for A are available from [27].
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Values of the excess Gibbs energies GZc, and
GEma in &qn (1) were obtained from experimental
data on the nonstoichiometry of the quasi-binary
(Fe,Mn, _,),..,O[28] and (Co,Fe,),_,0 (x +y = 1)
{29, 31] phases as a function of do, and cationic
composition. Empirical expressions for Gg&c, and
G Fema are reported in Table 1. It may be shown that
if the approximation that the oxygen content in
(Fe,Mn,_,),_,0 =y -(oxygen content in Fe,_,0)
were true, then the excess Gibbs energies in Table 1
would be independent of a,, and would depend only
upon the metal ratios. In reality, a significant oxygen
activity dependence is observed.

For 1/(1 — A) moles of the ternary solid solution
(Co,Fe,Mn, _,_,),_,O, the following expression for
the Gibbs energy was used:

G:‘E,Z=x‘#Eoo'*‘}"ﬂf-‘co'*‘(l—x—}’)'#i(no
+R-T-[x-Inx+y-lny+(l—x—y)

xIn(l—x —y)]+(1-x) Gu,

A=A =x =y G&e+ (1 —y)

©

A
X G&pma + m Ho,»
where the bmary excess terms G are calcu]ated from
Table 1 at the same molar ratio i/j as at the ternary
composition point. This approximation for the excess
free energy of the ternary phase is known as the
Kohler approximation [32] and is based on an
extension of simple regular solution theory. For a
large number of simple ionic phases, it has been
found that this approximation gives very good results
in all cases. Due to the lack of experimental data,
Gma Was assumed to be zero in eqn (6). In con-

- clusion, eqn (6) is the best possible approximation for

‘the change of the free energy in the quasi-ternary

. ..0¥ide solid solution (Co;Fe;Mn, - . 2.,); - 4O with the...

currently available data.

Table 1. Excess free energy terms for rock-salt structure
oxide solid solutions at different oxygen acuvmcs [28, 29]
(a) (Co,Fe,Mn,_,_.), _,O with x =

log,, ag, GEoun (kJ/mot)
—6 ~0.06-y (1= y)+ 1558 - (1 — y)?
-7 457 y-(1-py)+992-p-(1 —y)
-8 37y (I—y)+1054-y-(1 —p)

(®) (Co,Fe,Mn,_,_,), _,O with x +y =1

logy, a0, G &or. (kJ/mol)
-2 —158-x-(1 —x)+29.68-x2- (I —x)
—4 =129 -x-(1=x)4+25.12-x2- (1 — x)
-6 —113-x (1 --x) +35.46 - x2- (1 — x)
-8 144 -x (1 —x)+1550-x2-(1 —x)

RAMESH SUBRAMANIAN e7 al.

In the spinel phase, the maximum deviation from
stoichiometry is observed at high oxygen activities
in magnetite, Fe;_;0,. At 1200°C, ¢ in Fe;_,;0,
varies between —3.3-107% and 4.9-1¢-2 [22]. At
equilibrium with the rock-salt structure phase, the
negative value of ¢ is due to iron interstitials. As
mentioned earlier, for our analysis we assume that
the nonstoichiometry of the spinel phase does not
significantly affect the phase equilibria. In the case of
pure Fe;_ O, this assumption seems reasonable since
the fraction of vacant cation sites does not exceed
~0.016 and that of cations on interstitial sites does
not exceed ~0.0011. In the quasi-ternary system, this
assumption is even better. Recent measurements of
the nonstoichiometry in spinel solid solutions of the
type (Co, Fe, Mn),_;0, show that the deviation from
stoichiometry significantly decreases with decreasing
Fe,_;0, content [23). For the sake of simplicity, in
the following discussion, spinel compounds will be
denoted as Me; O, with the understanding that & is
assumed to be negligibly small.

3. SUBLATTICE MODEL

As mentioned above, due to the complexity in-
volved in the exact treatment of the cation distri- -
bution in the solid solution (Co,Fe,Mn,_,_,),0,,a
simple, semi-empirical approach is used. The cation
distribution is assumed to be governed by various
site- and charge-exchange reactions of which the
equilibrium consiants are independent of compo-
sition [8, 16]. It is also assumed that the cations on
each sublattice are randomly distributed.

For example, the cation distribution in Fe,0, may .

be represented as

(Fej* ,Fel*)[FeX*Felt ,]O,. %)

Ions in-the round parentheses are located on tetrahe-
dral sites and those in the square ones on octahedral

“sites: “The Eationi distiibiition is “deteriinied by ther e

equilibrium constant of the “site exchange reaction™

Fel* + Fe}* @ Fe}t + Felt. 8)
The subscripts A and B refer to tetrahedral and
octahedral sites, respectively. The molar Gibbs

energy change of this exchange reaction is:

AGEr. = [e(Fej*) — e(Fe}")] — [e(Fe}*) — e(Felt)].
®
The terms e(ion?} ) are the molar energies associated

with the differently charged ions on the sites indi-
cated. The bracketed terms, [e(Fep*) — e(FeX )] and :
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[e(Fel*) —e(Felt)], are called the octahedral site
preference energies of Fe?* and Fe’* ions, respect-
ively. If the e-terms are independent of composition,
then one can write:

2

_ AGEg. _ a
K—CXP(" R-T>_(l —na-a W

By solving eqn (10) for «, the cation distribution can
be calculated.

For the quasi-ternary spinel solid solution of inter-
est, a set of independent exchange reactions can be
formulated in terms of the unknown concentrations
of ions in the two sub-lattices. The cation distribution
can be written as

(Co*Co}*Fel*Fel*Mn2* Mn}*)
X [Co:“‘Co?,"Fcf*Fe}*Mni*Mn,’*]Q. (an
Site, charge and mass balances yield:
a+b+ct+d+e+f=1, (12)
g+h+i+i+k+1=2, (13)
2-(@a+ctet+g+i+k)
+3-b+d+f+h+j+D=8, (14
e+f+k+1=xyyo, =1 =%~ (15)
a+b+g+h=>xc0=% (16)
Xpmnzo, and Xcoy0, are the overall mole fractions of
Mn, O, and Co;0,. Seven independent internal equi-

libda can be formulated:

Fel* + Fe}* Fe’B‘T + Felt

'i-d o
sLnf e T AG;-’;&=—-—R T ln(c j>, e (17)

Mn2* + Mn}* 2 Mn3* + Mn}*

k-
AGfiwme=—R-T- 1( {) (18)

Fel* +Mn}* 2 Fej* + Mny*

if
—R-T- ln(m), (19)

Col* + Co}+ = Coj* + Coy*

I

exX
AGFcMn

gb
Eo=—R-T-
AGEco=—R" l“(a h) (20)

Colt + Mn}* = Copt + Mn”‘
AGZya=—R-T- m(—'—{), Q1)

Fel* + Mn}* 2 Fej* + Mmg?

il

AGRy=—R-T- ln(J-—k) (22)

Felt 4+ Coi* = Cod* + Fept

w _ _R-T- ”_'_")
AG Eeo R-T ln(j 2/ (23)
Equations (17-21) are site-exchange equilibria, while
eqns (22) and (23) are redox reactions on the octa-
hedral sub-lattice. Other equilibria, such as redox
reactions on the tetrahedral sub-lattice, can be
obtained by linear combinations of these equations.

Site-exchange Gibbs energies, AG™, have been
estimated from crystal field theory [S] and from an
assessment of thermodynamic and spectroscopic data
[6]. Redox Gibbs energies, AG™, have been estimated
from thermodynamic data [8). In an earlier publi-
cation by one of the authors [16], values of AG* and
AG™ for the quasi-binary spinel solid solutions
Fe,0,Mn,0,, Fe,0Co;0, and Co;0,~Mn;0,
were deduced from assessments of phase diagrams.
By using these AG-values in eqns (17-21), and solving
eqns (12-23) simultaneously, cation distributions can
be determined. A method to obtain an exact solution
of this problem was presented earlier for the quasi-
binary -systems Fe;O~Mn;O,, Fe;0,Co;0,
and Co,0,~Mn,0, [16]. However, this approach is
very complex and tedious, even for the quasi-binary
systems.

For the quasi-ternary spinel phase (Co,Fe,
Mn, _,_,);_;0, there are (at least) six types of ions,
each’of which can reside on two sub-lattices. For the

solution of eqns, (12-23), a_ more general numencal o
approach is proposed Wthh is based on the concepts o

of the sub-lattice model developed by Blander
and Yosim [17] for reciprocal ternary molten salt
solutions and formalized by one of the authors {18]
for multicomponent systems. The sub-lattice model
has been used to model systems other than molten
salts [19].

For the application of the sub-lattice model to
the spinel solid solution (Co,Fe,Mn;_._;);_50u,
neutral “pseudo-components” could be defined in
which three discrete ions are distributed on one fetra-
hedrally and two octahedrally coordinated cation sites
in a molecular unit. For (Co Fe,Mn,_,_;);.504, 45
different neutral pseudo-components could be formu-
Jated of which not all are independent from each
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other, i.e. cannot be obtained by a combination of
other neutral pseudo-components. However, the cal-
culations performed have not been based on direct
combinations of neutral, independent pseudo-com-
ponents. Instead, because a suitable general computer
program had already been developed earlier by
two of the authors, the modelling of the spinel solid
solution has been based on the combination of
pseudo-components some of which are electrically
charged. In each of these pseudo-components
the tetrahedral and octahedral sites are each
occupied exclusively by one kind of ion. That
is, there are 36 pseudo-components of the type
{(A™)[B™*B™+]0,}0"+"~¥*.  Combinations  of
pseudo-components are always made so that
overall electroneutrality is maintained. For example,
by combining the charged pseudo-components
{(A3+)[B3+B3+104}+l and {(A:H)[BH'BH']O‘}'_I in
equal amounts a neutral unit is obtained. It can
be shown that this treatment is formally equivalent
to the method involving only neutral pseudo-
components.

As in eqn (9), energies ¢ are defined which are
associated with the ions on each sub-lattice. In prin-
ciple, these energies correspond to standard values
of electrochemical potentials. However, because
only neutral combinations are considered later, the
electrical terms then cancel out. Therefore they are
not formulated explicitly. The standard molar Gibbs
energy of a pseudo-component is then the sum of the
energies of its ions. For example,

Gleonypamrmmreo, = E(FEX) +2 - e(Mng'), (24)

and analogously for all other pseudo-components
considered.

The Gibbs energy of a mole of the solid solution
(Co,Fe,Mn, _,_,);_;0, at any composition is given
as: ’

. fé 6=~ v e -
- . . GO
G= Z Y Xay* Xoi)” G lmianion

m=1n=1

6
+R-T(Z Xomay * I Xoiay

m=1

6
+2- Y Xy In x,,m) + GE. (25)
n=1

The summations are over all six m-ions on the
tetrahedral A sub-lattice and all six n-ions on
the octahedral B sub-lattice. x4, and x,g are the
fractions of A sites occupied by m ions and of B sites
occupied by nions, respectively. G& is an excess Gibbs
energy.

~ eqns (24), (29) and (32):.

Groymnremarsjo, = AGRp + Cp + 2

The Gibbs encrgies G0, Of the pseudo-com-
ponents can be evaluated from the Gibbs energies,
AG* and AG™, of the exchange and redox reactions.

With no loss in generality, one can a'rbitrarily select
for the standard states

e(Fei") =e(Fej") = e(Fe}*)=C,,  (26)
eMng*) =G, @7
and

€(Cod*) =C,. (28)
C,, C,, C; are constants. For the (Fe,Mn,_,);0,
solid solution based on reactions (17) to (19) and (22)

one can write
AGgp = e(Fe)") - C (29)

AGE o = €(Mnd*) + e(Mn}*) — e(Mn}) — C,

(30)
AGE = (M) — C; Gn
AG e = —€(Mn3*) + C;. (2)

Similar independent equilibria can be formulated
for the (Co,Fe,);0, (x +y = 1) solid solution.

AGE o, = €(Cokt) +€(Cok¥) — e(Cokt) — C;  (33)

AGEq, = e(Colt) — C, (34)
AGE., = —¢(Col)+Cy. (35

From eqns (26) to (35), all energies € can be evalu-
ated. Hence, the G° values for all 36 pseudo-
components can be calculated. For example, from

LR e

x(Cy — AGFwa).  (36)

Inserting values for G0, into eqn (25), and intro-
ducing an appropriate expression for GF as a function
of composition, we find the site fractions Xna,
and X, which minimize G subject to the constraints
of the overall mole fractions of the real components
(X040 ¥nnyo, 20d Xco0,) and of the overall charge
neutrality. If GF is assumed to be zero, this treatment
is formally equivalent to the solution of eqns (12-23).
It can be shown that the calculated values of x4, and

X5 (that is, the cation distribution) are independent

of the arbitrary constants C;, C, and C;.
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Standard numerical techniques of calculating con-
strained minima can be used, and the procedure
can be generalized to any number of components.
In the present case we have used the EQUILIB
program of the F*A*C*T thermodynamic computer
system which incorporates the general constrained
Gibbs energy minimization routines SOLGASMIX
[33, 34].

Although the cation distribution is independent
of the constants C,, C, and C,, values must be
assigned to these constants if equilibria between
the spinel phase and other phases (such as the
rock-salt structure phase) are to be calculated.
Taking first pure Fe,O,, we solve for the cation
distribution by minimizing G in eqn (25).
Setting C,=0, this then gives GY.,0,(C,=0).
Cl can then be calculated from the relation

G.j0,= (Gl0,(C, = 0) + 3C,), where Gio, is the
experimental value, relative to the standard state
of the elements at 298 K, which can be found
in standard thermodynamic tables. Repeating the
procedure for pure Mn,; O, and Co, O, permits C, and
C, to be obtained. '

In a previous investigation [16], good fits
to the equilibrium data for the Fe;0,-Mn;0,,
Fe,0,Co;0, and Co;0,~Mn;0, systems were ob-
tained for a range of temperatures and oxygen activi-
ties with GE=0 in eqn (25). However, with the
correct inclusion of the nonstoichiometry in oxide
solid solutions with the rock-salt structure, at least at
1200°C, it is mecessary to include a set of small
empirical excess energy terms to obtain a good fit of
the experimental data. These excess energy terms may
be treated formally as arising from cation—cation
interactions. However, so many interactions are poss-
ible that there is no way to determine, on the basis of

the available data, which interactions give rise to the

excess terms. Hence the choice of the exact form

.+ of the excess terms is rather arbitrary. For example,

'1f we. consider that "A-B interactions. between a
cation on an A site and a cation on a B site are
responsible for the excess terms, then we could add
excess terms such as a - Xz - Xyp) 10 Bqn (25) where
a is an adjustable parameter. If, instead, we con-
sider A-A and B-B interactions between cations
on the same sub-lattice, then we could add excess
terms such as a - xya, * X;a)- Either choice gives good
results.

In the present case, we arbitrarily decided to treat
the binary excess terms as being due to interactions
on the same sub-lattice. Taking as example the
Fe,0,-Co,0, binary system, we further assume
that all Fe-Co interactions on the same sub-lattice
have the same energy regardless of the ionic charge
and regardless of the sub-lattice. “Regular” and

higher order binary excess terms can then be
written as:

Xa) " Xza)

4 £

E  _ o TEA) TR

GEeco = 2 2. Cma [(x Fx )l
j=Fe2+ Fel+ ma {A) AA)
j=Ca2+Col+

X (l - an’" - an’.’)

L M, A

XiB) " X8
m4+n—2

(x,(g)’i'xj(m)

X (1 - XMniq. - an’AQ)] - (37)

As an abbreviated: notation, for (Co,Fe,
Mn,_,_,);0, with (x +y)=1, the binary excess
energy terms can be written as:

Beo=Y G X" Y" (38)
m.n

It must be stressed, however, that eqn (38) is only a
compressed notation. Equation (37) is the full form,
a,, can be called a “regular” adjustable parameter, a,,
and a,, are “sub-regular” parameters, €tc. Although
eqn (37) contains many terms, there are only a
very few parameters necessary to fit the data for
the Fe;0,~Co;0, system. Analogous expressions
can be formulated for the excess energies in the
Fe,0,Mn;0, and Mn;0,~Co;0, systems. In any of
the binary systems, no more than one adjustable
parameter was required to satisfactorily fit the
available data. The binary excess terms are then
added together to give the ternary G® term in
eqn (25). This can be shown to be very similar to the
Kohler approximation [32], discussed earlier, for
estimating the effect of a third component upon

,.bmdry mteractlons Although a. snmpler equatlon_ L
could be ‘used in the present case, the consistént use

of the Kohler equation permits us to write very
general computer programs for a wide variety of
solution types. Again, it should be stressed that the
excess terms are small, and are necessary only when
precise curve fitting of experimental data is desired.
It is not intended that physical significance be
attached to these parameters, and so the form of the
equations used for G® can be chosen with some
latitude.

Ternary excess terms can also be included in eqn
(25). These terms must be zero in all three binary
sub-systems. In the present case, only one small
ternary excess term was included. This term was
chosen arbitrarily, as being due to triplet Co-Fe-Mn
cation interactions, with all such interactions having
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the same energy regardless of the sites occupied by
the ions. That is:

E —
GF:.\(nCo - z a
i=Fe2+ Fel+ P=AB
Jj=Mn2+ Mnd+ Q0=AB
k = Co2+ Co3+ R=AB

X Xgp)* Xpoy* Xxms (39)
where a is the single adjustable parameter.

The sub-lattice model can be generalized to apply
to other multicomponent ceramic phases with two
cation sub-lattices (such as (A42%),(B**)O, spinels,
pseudobrookite phases, ilmenite phases, etc.). Gen-
eral computer routines have been written which can
be used for all such solutions.

4. PROCEDURE

With the free energy of the spinel and rock-salt
structure phases formulated as described in the pre-
vious sections, minimization of the Gibbs energy of
a combination of the phases is carried out using the
EQUILIB program of the F*A*C*T system. This
program incorporates the numerical techniques of
SOLGASMIX for calculating Gibbs energy minima
for a multicomponent system.

The standard free energies of the spinel-like
pseudo-components are calculated from the site ener-
gies for individual ions on the octahedral and tetrahe-
dral coordinations using eqn (24). For calculating
phase equilibria between the spinel and rock-salt
structure phases, the constants C,, C, and C, (see
eqns (26) to (28)) have to be calculated, as discussed
above. The standard free energies used for this pur-
pose are listed in Table 2. The expression for the
formation energy for Co;O, has been derived by
fitting experimental data available from the literature
[36-40] for the Co,_,0/Co;_;0, phase equilibrium
at one atm total pressure including recent infor-
mation on this ethbnum at higher total pressures

- [41}: For the oxygen activity'at the Co; - ;0/Co;_ .,04""'.

equilibrium we obtained

22,730
logyy ao, = 20.569 — = — 1425 x 10° S x T/K2.

(40)

For the quasi-binary rock-salt structure oxide solid
solutions, the free energy of the phase as a function
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of oxygen partial pressure and composition, taking
into account the nonstoichiomet;y of the solid sol-
ution, has been calculated as discussed earlier (see
also [28, 29]). In both the quasi-binary and the quasi-
ternary systems, the (ree energy minimization is
performed at different oxygen activities in order to
obtain the compositions of the spinel and rock-salt
structure oxides in equilibrium with each other.

First, free energy minimizations were carried out
for the three quasi-binary phases. The calculated
phase equilibria between the spinel and rock-salt-
structure phases with varying oxygen activity then
were compared with the available experimental data.
The site preference energy values were varied to
obtain a best fit of the experimental rock-salt struc-
ture phase boundaries in all the three quasi-binary
phases. Guidelines for the effect of site preference
energies on the quasi-binary phase equilibria are
reporied in detail in [16]). They were used to obtain
a set of site preference energies that best fit the
measured phase boundaries. Then, this set of site
preference energies was used for further calculations
in the quasi-ternary phase. Small excess energy terms
were included in this model to improve the fit of the
experimental data in the quasi-binary (see eqn (38))
and in the quasi-ternary solid solutions (see eqn (39)).
The phase equilibria calculated for the quasi-binary
systems are compared with the information available
in the literature [28, 29, 42] and those calculated for
the quasi-ternary solid solution are compared with
recent experimental data [43]. A semi-quantitative
picture of the trends in the cation distribution in the
binary and ternary spinel phases was obtained from
the site preference energies selected. ’

5. RESULTS AND DISCUSSION

The phase stability limits in quasi-binary systems
are reported in loga‘o2 versus composition phase
ure. These dlagrams “aré topologlcally 51mllar to
binary temperature—composition phase diagrams.
Although these diagrams do not show deviations
from stoichiometry at equilibrium, they are much
more convenient to handle than the three-dimen-
sional plots which would be required to do this. In
the quasi-ternary system, due to the addition of one
composition variable, the two-phase region between
the spinel and rock-salt structure phases would in

Table 2. Thermodynamic data used in the calculations

Reaction AG (at 1200°C) [kJ/mol] Ref.

3Fe0 + 0.50, = Fe, 0, —127.21 [30]

3MnO + 0.50, = Mn, 0, —58.98 (3]
3Co0 + 0.50, = Co; 0, 28.862 This work
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principle have to be represented in a three-dimen-
sional plot, where, for example, the vertical axis could
represent loga,, and the basal plane the Gibbs
composition triangle. By projecting phase stability
limits for different, constant oxygen activities onto
the basal plane one can obtain two-dimensional
diagrams containing phase stability information.
Such diagrams have been discussed previously {43].

Figure 1 shows the site preference energies of the
individual ions that have been chosen to fit the phase
equilibria in all systems in comparison with site
preference energies reported previously in the litera-
ture. After testing a large number of combinations
of site preference energies, we decided that the best
results were obtained with the values given by Pelton
et al. [16], and also chose the redox energies AGY,
given by these authors. In the following, the phase
equilibria results for the three quasi-binary sub-
systems of the Co-Fe-Mn-O systems are presented
first. Then, the results for the quasi-ternary system
are discussed. In all cases, the resulting cation distri-
butions in the spinel solid solutions are also shown
and are compared with conclusions based on other
experimental data.

5.1. The Fe—Co—O system

Figure 2 shows experimental data for the stability
limits of the spinel and rock-salt structure phases at
1200°C from different investigations [36, 37, 44]. The
solid lines limiting the two-phase region have been
calculated in [29]. The stability of the spinel solid
solution decreases abruptly for values of x > 0.33.
The dashed and dashed—dotted lines limiting the
two-phase region have been obtained in this study by
modelling. The site preference energies used for this
fit are shown in Fig. 1 and are the same as reported
in [16) as were the redox energies. The change of the
free energy of the rock-salt structure phase with

. oxygen acthty has been taken into account by an.
* exdet treatment 6f the nonstotchlomctry *6f the oxide’

solid solution [29] as discussed before. To obtain a
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Fig. 1. Single ion site preference energies in spinel phases.
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Fig. 2. Spinel and rock-salt structure phase stability limits
at 1200°C for the Co-Fe-O system.

more precise fit, it was necessary to use one binary
excess energy term in the spinel solid solution. This
excess energy was —2.09 - x* - y kJ/mol in the abbre-
viated notation of eqn (38). The effect of the inclusion
of this excess energy term on the phase equilibria
is demonstrated in Fig. 2. The influence of this term
on the results obtained for the cation distribution is
shown in Figs 3a and b. It is worth noting that the
influence on the cation distribution is negligible, while
it is small for the phase equilibria. The redox and
exchange reactions between different ions on the
tetrahedral and octahedral sites are the principal
controlling reactions for the cation distribution in the
solid solution. Hence, the cation distribution is not
significantly affected by the excess energy terms in
the spinel phase. It may be noted that at x =0.4
(the highest value of x in Fig. 2 for the spinel phase),
this term amounts to less than 0.1 kJ. Overall, the fit
obtained for the phase stability limits is acceptable.
However a few discrepancies exist. A possible reasen
for these could be the exclusion of the nonstoichiome-
try of the spinel solid solution. For pure Fe;O, a

‘random. cation._distribution._ has been assumed.at. . ...
“1200°C, and hence the exchange redction AG HF', has

a value of 0kJ/mol. This distribution has also been
deduced from experimental studies of the thermo-
power and electrical conductivity of magnetite
{45, 46]. Co;0, is not stable at 1200°C at one atm
total pressure. Hence its cation distribution is debat-
able. A recent high temperature X-ray diffraction
study suggests that the distribution tends towards a
disordered normal spinel {47]. A value of 25.1 kJ/mol
[16] for the exchange reaction AGZ, results in a
distribution slightly deviating from normal at
1200°C.

Due to the abrupt decrease in the stability of the
spinel region for cobalt mole fractions greater than
0.33 at a temperature of 1200°C, most investigations
have been made at lower cobalt contents. Cation
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Fig. 3. Effect of the introduction of an excess energy term
for the solid solution (Co,Fe;);0,(x +y =1) at 1200°C
on the cation distribution on (a) octahedral sites; and
(b) tetrahedral sites: ——— without regular excess energy
terms, and —— with the regular excess emergy term
—2.09-y*- x kI/fmol. The individual data points shown
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quenched with a rate of 10*°C/s are from [50].

distribution daia for the Fe;0,~Co;0; solid solution

.. are available in the literature; They. have been derived ..

from thermopower data [48] measured at high tem-
peratures. Unfortunately, several assumptions are
involved in the interpretation of such thermopower
data. Some of these assumptions are: (i) Co®* ions are
absent at x < 0.33; (ii) a small polaron conduction is
operative and involves only Fe ions on octahedral
sites; and (iii) the entropy contribution from the heat
of transport of the electrons between the sites can
be neglected. Despite the uncertainties introduced by
these assumptions, trends of the data sets derived
from the experimental studies and from calculations
performed in our study are in reasonable agreement
(see Figs 3a,b). Samples which have been quenched
from high temperatures to freeze in the high-tempera-
ture cation distributions were analyzed by M&ssbauer
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spectroscopy and magnetization techniques [49, 50].
The results of these investigations show that the
relaxation time for the cation rearrangement between
the sites is very short in comparison to quenching
rates of 10°°C/s above 900°C [49]. The concentrations
of the different ions in the tetrahedral and octahedral
sites in samples of (Cog a3 Feg167); 04 quenched from
1200°C at a rate of 10°°C/s [50] are displayed in
Figs 3a,b. The concentrations are in reasonable
agreement with the values calculated in this study.

5.2. The Fe-Mn-O system

As seen in Fig. 4, agreement between the phase
equilibria obtained in this study and those calculated
in [28] is satisfactory. An excess energy term in the
spinel phase was required. This excess energy term
was —6.28 (1 —x —y)-y*kJ/mol (in the abbrevi-
ated notation of eqn (38)). The effect of this excess
energy term on the phase equilibria is shown in Fig. 4
and on the cation distribution in the solid solution of
Figs 5a,b.

For the cation distribution, several investigations
have been performed. Disagreement exists for the
charge of the valence states in the spinel structure for
the pure oxide Mn;O,. The presence of Mn?* and
Mn** [51], Mn?* and Mn** 5, 52] and combinations
of the three valence states [53, 54] have been pro-
posed. Here, a nearly normal distribution is assumed
with the presence of Mn** and Mn’* ions only.
This is modelled by a value of 83.6 kJ/mol for the
exchange reaction, AG§im, [16). Fe;O, is assumed
random with AG&g, = 0. With the selection of these
values and the exchange and redox reactions between
the ions, one can calculate the cation distribution
across the solid solution. The trends of the cation
distribution in the binary solid solution can be com-
pared with the data available in the literature. The

distribution of the various charged cations has been -

discussed in detail [54] by attempting to interpret.

.
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Fig. 4. Two-phase region between spinel and rock-salt
structure phases in the Fe-Mn-O system at 1200°C.
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simultaneously results from thermopower, conduc-
tivity and Mossbauer studies. However, it is worth
noting that the Mossbauer studies were performed on

. quenched samples and that assumptions were made
in the analysis of €léctrical conductivity and ‘thérmo-

power data. Since the assumption of a disproportion-
ation reaction, leading to the presence of all three
valence states, Mn?*, Mn** and Mn‘*, in the spinel
structure was introduced, the data from [54] cannot
be compared with our present modelling. Another
detailed modelling of the cation distribution in
Fe,0,-Mn,0, at 1200°C has been made by taking
into account only 2+ and 3+ charged ions and their
reactions with the point defects present in the spinel.
The underlying assumption was a constant defect
formation energy at all compositions in the solid
solution [55). The concentrations of the different ions
in the tetrahedral and octahedral sites obtained from
[55] are compared with the values from this study in

'

Figs 5a,b. The concentrations and trends obtained
are considerably different. To obtain a clearer picture
of the cation distribution, experimental in-situ inves-
tigations which provide direct structural information
are needed.

5.3. The Co-Mn-O system

Experimental data for the two-phase region be-
tween the spinel and rock-salt structure phases
at 1200°C [42] are shown in Fig. 6. The effect of
the nonstoichiometry of Mn,_,O on the rock-salt
structure solid solution was taken into account by
using a simple approximation as explained before.
The nonstoichiometry data in Mn,_,O can be ex-
trapolated reliably up to a value of logag,= —2.
Hence, the calculation of the phase diagram is poss-
ible only up to logag, = —2. The stability limits
extrapolated to higher oxygen activities are shown as
dashed lines in the figure. With the site preference
energies and redox equilibria fixed for the two other
systems, under the constraints of the model, the
values for this system, Co-Mn-0O, cannot be changed
without changing the values for the systems Co-Fe-O
and/or Fe-Mn-O. Using the values from these sys-
tems, the phase equilibria in Fig. 6 have been calcu-
lated. Nonstoichiometry was neglected in the spinel
phase and no regular solution excess energy terms
were used in the spinel phase. Since the site preference
energies arc the same as reported in ([16], and
no excess energy terms have been used, the cation
distribution obtained is identical to that calculated

in [16].

5.4. The Co-Fe-Mn-O system

For this quasi-temary system, the stability limits of
the spinel and rock-salt structure phases at different
oxygen activities at constant temperature and total
pressure are represented as projections onto the
Gibbs composition triangle. Experimental data for
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(®)

Fig. 7. Stability limits of oxide solid solutions in the
Co-Fe-Mn-O system at 1200°C. (a) Stability limit of the
spinel phase towards the rock-salt structure phase; and (b)
stability limit of the rock-salt structure phase towards the
spinel phase: —— calculated with the excess energy term
+1674-x-y (1 —x —y)kJ/mol, and --- calculated
without excess energy terms. Experimental points: A from
[28], [29] and {42], O from [43].

the lower stability limit of the spinél phase towards
the rock-salt structure phase [43] are shown in
Fig. 7a. In Fig. 7b, experimental data for the stability
limit of the rock-salt structure phase towards the
spinel phase are displayed. As explained earlier, the
experimental data for the quasi-binary phases were
fitted by using a set of site preference and redox
energies. The same set of values has also been used
in the calculation of phase equilibria between the
spinel and rock-salt structure phases in the quasi-
ternary system. The stability limits of the spinel and
rock-salt structure phases were calculated by free
energy minimization for specific oxygen activities
and then projected onto the basal plane. The dashed
lines shown in Figs 7a and b have been obtained
without using ternary excess energies. The intro-
duction of an excess energy term for the spinel

solid solution of the form of eqn (39) with
a=16.74-x+y (1 —x —y) kJ/mol (in the abridged
notation) leads to a significant improvement of the fit,
especially for the lower stability limit of the spinel
structure. The solid lines in Fig. 7a have been ob-
tained in this way. The fit for the upper stability limit
of the rock-salt structure phase improves at an oxy-
gen activity of 107¢, but deteriorates at lower oxygen
activities. It is worth noting that the excess energy
introduced at the median of the composition triangle
has a maximum value of only 0.6kJ. Presently,
no explanation can be offered for its origin, its
magnitude and the form chosen.

The experimental data presented in Fig. 7b are
slightly different from those previously reported [43]
for the Fe-Mn—O system. The reason is that the data
shown in [43] were only estimated while the new data
points were taken from the recent study of the
two-phase region in the Fe-Mn-O system at 1200°C
[28]. The agreement obtained with the experimental

data at all oxygen activities for the lower stability .

limit of the spinel phase is good. Agreement is not
as good for the upper stability limit of the rock-
salt structure phase. This could be due to the
difficulty in experimentally detecting this stability
limit (for details see [43]) and/or due to the approxi-
mations used for modelling the nonstoichiometry of
(Co, Fe, Mn), _,O as a function of oxygen activity.

Figure 8 shows the projection of phase stability
limits at a constant oxygen activity of 107 at 1200°C.
The two-phase region where the spinel and rock-salt
structure phases coexist is enclosed between two solid
lines. These lines have been calculated by using a
ternary excess energy term in the spinel phase. The
calculations performed allow also the determination

Fig 8. Two-phase region between spinel and rock-salt
structure phases in the Co-Fe-Mn-O system at 1200°C and
log ag, = —4. Tie-lines show compositions of coexisting
spinel and rock-salt structure phases: —— calculated with
the excess energy term +16.736 - x -y - (1 —x —y) kJ/mol.
Experimental points: O from [29], [42] and [43].
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of the compositions of coexisting spinel and rock-salt
structure phases. The tie lines shown in Fig. 8 are an
example of results obtained from such a calculation.
Diagrams similar to Fig. 8 can be obtained for other
oxygen activities.

Figure 9 shows an example for cation distri-
bution information available from the modelling
performed. In this figure, calculated concentrations
of the different ions on octahedrally and tetrahedrally
coordinated cation lattice sites are displayed for
the ternary solid solution (Co,,Fe,Mny;_,);0, at
1200°C.

Overall, it can be stated that a successful extension
of the modelling of quasi-binary phases has been
made to quasi-ternary phases on the basis of the
sub-lattice model. A good agreement between exper-
imental and calculated data for the lower stability
limit of the spinel phase has been obtained. However,
some problems still exist for the upper stability limit
of the rock-salt structure phase.

The cation distributions resulting from the present
modelling give a semi-quantitative idea of the concen-
trations of the different ions in octahedral and tetra-
hedral lattice sites. In the Co,0,-Fe;0,~Mn,;0,
spinel ‘solid solution ‘this’ modelling provides infor-
mation about the general trends of the distribution of
the 6 different ions on two types of lattice sites. Some
experimental information about the cation distri-
bution is available for the high iron content region.
However, this has been deduced from thermo-
power and conductivity data by using different,
parily unproven, assumptions [56]. Nevertheless, the
trends shown in Figs 10a and b are in reasonable
agreement with the values derived in [56). The effect
of the ternary excess energy term on the cation
distribution is negligible, as in the case of the quasi-
binary phases.

site occupancy

nMn/[nCo + npe + nMn]

Fig. 9. Cation distribution in (Co,,Fe,Mny;_,),0, at

1200°C. The spacing between two consecutive lines for any

given manganese content gives the concentration of the ions
in the region enclosed by these two lines.
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Fig. 10. Comparison between cation distribution data de-

rived from thermopower studies [56] and calculated in this

study for (Co, Fegg; Mng 55 _ ), O, at 1200°C: (a) iron ions
only; and (b) cobalt and manganese ions.

6. CONCLUSIONS

A sub-lattice model has been used to model the
spinel structure phase in the Co-Fe-Mn-O system at
1200°C. It is based on the distribution of cations
between tetrahedral and octahedral sites. An exact
treatment of the nonstoichiometry of the solid sol-
utions of (Fe, Co),_,O and (Fe, Mn), _,O has been
incorporated into the modelling. A set of spinel site
preference energies and redox energies was selected
for fitting experimental data for the two-phase region
between the spinel and rock-salt structure phases of
the quasi-binary boundary systems. These energies
were then used to model phase stability limits in
the Co-Fe-Mn-O system at 1200°C. The results

‘obtained have been represented as projections of

phase stability limits for different oxygen activities
onto the Gibbs composition triangle. Cation distri-
butions have been derived for the quasi-binary
boundary spinel solid solutions, (Co, Fe),0,,
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(Co, Mn);0, and (Fe, Mn),0,, as well as for the
Co0,0,Mn,0~Fe; 0, solid solution.
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