PII: S0364-5916(99)00026-7 ## MODELING THE CHARGE COMPENSATION EFFECT IN SILICA-RICH Na₂O-K₂O-Al₂O₃-SiO₂ MELTS Patrice Chartrand and Arthur D. Pelton Centre de Recherche en Calcul Thermochimique École Polytechnique de Montréal P. O. Box 6079, Station "Downtown" Montreal, Québec H3C 3A7 Canada (Presented at CALPHAD XXVIII, Grenoble, France, May 1999) **ABSTRACT** At high SiO₂ contents, a model of Na₂O-K₂O-Al₂O₃-SiO₂ melts must take into account the "charge compensation effect" whereby the replacement of a tetravalent Si⁴⁺ by a trivalent Al³⁺ in the silicate network is facilitated by the formation of (NaAl)⁴⁺ or (KAl)⁴⁺ associates. This effect has been taken into account in the quasichemical model by treating the (NaAl)⁴⁺ and (KAl)⁴⁺ associates as separate species in the melt, which is then formally treated as consisting of the components NaO_{1/2}, KO_{1/2}, AlO_{3/2}, SiO₂, (NaAl)O₂ and (KAl)O₂. Optimizations of the Na₂O-Al₂O₃-SiO₂, K₂O-Al₂O₃-SiO₂ and NaAlSiO₄-KAlSiO₄-SiO₂ systems at high SiO₂ contents are reported. #### 1. INTRODUCTION Over the past several years we have used the modified quasichemical model [1-3] for the optimization of a large number of multicomponent molten oxide solutions. This model treats short-range ordering in the pair approximation. For example, for a solution AO_x-BO_y-SiO₂ (such as NaO_{1/2}-AlO_{3/2}-SiO₂), the parameters of the model are the Gibbs energies of formation of second-nearest-neighbour pairs according to: $$(A - A) + (Si - Si) = 2(A - Si); \qquad \Delta g_{ASi}^{o} = \omega_{ASi} - \eta_{ASi}T$$ (1) $$(B-B) + (Si-Si) = 2(B-Si); \qquad \Delta g_{BSi}^{o} = \omega_{BSi} - \eta_{BSi}T$$ (2) $$(A-A)+(B-B)=2(A-B);$$ $\Delta g_{AB}^{o}=\omega_{AB}-\eta_{AB}T$ (3) where (X-Y) represents a second-nearest-neighbour pair. For example, (Si-Si) represents a pair of network silicons joined by a "bridging" oxygen: (Si-O-Si). The Gibbs energy of the solution is given by: $$G = \left(n_{AO_{x}}g_{AO_{x}}^{o} + n_{BO_{y}}g_{BO_{y}}^{o} + n_{SiO_{2}}g_{SiO_{2}}^{o}\right) - T\Delta S^{config} + \left(n_{AS_{i}}\Delta g_{AS_{i}}^{o} + n_{BS_{i}}g_{BS_{i}}^{o} + n_{AB}\Delta g_{AB}^{o}\right)$$ (4) where n_i and Δg_i^{σ} are the number of moles and standard molar Gibbs energy of component i (i=AO_x, BO_y, SiO₂); n_{xy} is the number of moles of second-nearest-neighbour (X-Y) pairs; and ΔS^{config} is the configurational entropy which is given by the following (Ising) approximation for the random distribution of the pairs o 'er "pair positions": $$\Delta S^{config} = -R \left(n_{AQ_{s}} \ln X_{AQ_{s}} + n_{BQ_{s}} \ln X_{BQ_{s}} + n_{SiQ_{s}} \ln X_{SiQ_{s}} \right)$$ $$-R \left[n_{AA} \ln \frac{X_{AA}}{Y_{A}^{2}} + n_{BB} \ln \frac{X_{BB}}{Y_{B}^{2}} + \eta_{SiS_{s}} \ln \frac{X_{SiS_{s}}}{Y_{S_{s}}^{2}} \right]$$ $$+ n_{AS_{s}} \ln \frac{X_{AS_{s}}}{2Y_{A}Y_{S_{s}}} + n_{BS_{s}} \ln \frac{X_{BS_{s}}}{2Y_{B}Y_{S_{s}}} + n_{AB} \ln \frac{X_{AB}}{2Y_{A}Y_{B}}$$ (5) where X_i is the mole fraction of component i, X_{XY} is the bond fraction of (X-Y) bonds: $$X_{XY} = n_{XY} / \sum n_{ij} \tag{6}$$ and YA, YB and YSi are "equivalent fractions" given by: $$Y_A = \frac{Z_A X_{AO_x}}{Z_A X_{AO_x} + Z_B X_{BO_y} + Z_{Si} X_{SiO_2}}$$ (7) where Z_i is the second-nearest-neighbour "coordination number" of i. The equilibrium state is computed by minimizing G subject to the mass balance constraints [1-3]. In a binary system, such as $NaO_{1/2}$ -SiO₂, if the parameter Δg_{NaSi}^{o} (see eq. 1) is very negative then (Na-Si) pairs will predominate, and both the enthalpy and entropy will exhibit minima near the composition $Y_{Na} = Y_{Si} = 0.5$. The corresponding mole fractions are determined by the ratio (Z_{Si}/Z_{Na}) . By setting this ratio equal to 4.0, we set the composition of maximum short-range ordering at $X_{NaO_{1/2}} = 0.8$, which is the orthosilicate composition, Na_4SiO_4 . Since the expression for ΔS^{config} in Eq. (5) is an approximation, the values of Z_i which yield the best optimizations do not necessarily correspond to the actual coordination numbers (although their ratios correspond to the actual ratios). As discussed previously [1-3], the appropriate values for $NaO_{1/2}$, $AlO_{3/2}$, and SiO_2 are: $Z_{Si} = (4 Z_{Na}) = (4/3 Z_{Al}) = 2.7548$. For purposes of optimization of experimental data, the Δg_{ij}^{o} parameters are expressed as empirical power series in the equivalent fractions [1-3]. For example, the optimization of the NaO_{1/2}-SiO₂ binary system [4] gives the following optimized expression for the liquid: $$\Delta g_{\text{NaSi}}^{\circ} = -114345 + 43.932 \text{ T} - 381598 Y_{\text{Si}} + (123010 + 20.920 \text{ T}) Y_{\text{Si}}^{7} J/mol$$ (8) The optimized phase diagram is compared with several experimental data points [5-8] in Fig. 1. Experimental activities in the liquid are also closely reproduced. Details of the optimization, as well as expressions for the standard molar Gibbs energies of all compounds, have been given previously [4]. Note that, as expected, Δg_{NoS}^{o} is very negative in this binary system, reflecting the strong tendency of the "network modifier", Na₂O, to break the (Si-O-Si) bridges and form stable ordered solutions. By contrast, the optimization [9] of the AlO_{3/2}-SiO₂ system gave the following optimized expression for the liquid $$\Delta g_{AlSi}^{o} = 4800 + 100784 Y_{Si}^{3} - 142068 Y_{Si}^{5} + 78571 Y_{Si}^{7} J/mol$$ (9) In this system, $\Delta g^{o}_{AlS_1}$ is slightly positive. Liquid AlO_{3/2}-SiO₂ solutions exhibit slight positive deviations from ideality. The optimized phase diagram is compared with some experimental data points [10, 11] in Fig. 2. Full details of the optimizations and values of standard Gibbs energies of all compounds have been given previously [9]. A similar optimization of the Na₂O-Al₂O₃ system has been performed [12]. Using these three binary optimizations, Wu [12] used Eq. (4) to estimate G of ternary liquid NaO_{1/2}-AlO_{3/2}-SiO₂ solutions, and then used this estimate to calculate the ternary liquidus surface. In these calculations the asymmetric approximation [2,3] was used; that is, it was assumed that Δg_{NaSi}^o and Δg_{AlSi}^o in Eq. (4) in the ternary solution are constant along lines of constant Y_{Si} , such that Eqs. (8) and (9) may be substituted directly into Eq. (4), while Δg_{NaAl}^o was assumed to be constant along lines of constant ratio (Y_{Ns}/Y_{Al}) . The ternary liquidus surface calculated in this way is in very poor agreement with the experimental phase diagram. In order to improve the agreement, Wu [12] included several empirical "ternary parameters". These account for the influence of the third component upon the Gibbs energies of formation Δg_{ij}^o of the binary pairs. For example, the effect of Al upon Δg_{NaSi}^o is modeled by adding terms such as $\omega_{NaSi(Al)}^{ij} Y_{Si}^i (Y_{Al} + Y_{Na})^j$ to Eq. (8), where $\omega_{NaSi(Al)}^{ij} (j \neq 0)$ is an empirical ternary parameter obtained from the optimization of ternary data.s Even with 5 large ternary parameters, Wu was unable to obtain a satisfactory representation of the ternary liquidus. This result is in contrast to our finding that, in many other ternary and multicomponent systems involving the components SiO₂-Al₂O₃-CaO-MgO-FeO-Fe₂O₃-PbO-ZnO-CrO-Cr₂O₃-Cu₂O-etc. [2, 3, 9, 12, 13-19], the quasichemical model gives good approximations of the Gibbs energy of the liquid oxide solutions with only a few small, or with no, ternary parameters. #### 2. MODELING THE CHARGE COMPENSATION EFFECT Clearly, the assumptions of the model are inadequate in the case of NaO_{1/2}-AlO_{3/2}-SiO₂ solutions. An indication of how the model might be improved is provided by two features of the experimental liquidus surface. In Fig. 3a it can be seen that the liquidus of mullite descends very steeply from the SiO₂-Al₂O₃ binary system to the SiO₂-NaAlO₂ join [20]. This shows that liquid SiO₂-Al₂O₃ solutions are very strongly stabilized by the addition of Na₂O up to a molar Na:Al ratio of 1:1. The second feature is seen in Fig. 4 which shows the liquidus along SiO₂-NaAlO₂ join between SiO₂ and albite, (NaAlSi₃O₈). In the limit as $X_{SiO_2} \rightarrow 1$, the limiting slope of the SiO₂-liquidus is given by Raoult's law as: $$\lim_{X_{S(O_2)} \to 1} \left(dX_{S(O_2)} / dT \right) = \Delta h_{f(S(O_2))}^o / vRT_{fus(S(O_2))}^2$$ (10) where $\Delta h^o_{f(SiO_2)}$ and $T_{f(SiO_2)}$ are the enthalpy and temperature of fusion of SiO₂ and v is the number of moles of independent atoms or ions introduced per mole of NaAlO₂ (or of NaAlSi₃O₈). The experimental [21] points show that the limiting liquidus slope corresponds closely to v=1. That is, Na and AI enter into solution as (NaAl) associates. The simple quasichemical model, however, predicts v=2 in the limit as $X_{SiO_2} \to 1$. (By setting $\Delta g^o_{NaAl} <<0$, the concentration of (Na-Al) nearestneighbour pairs could, of course, be increased. However, a calculated liquid-liquid miscibility gap would then appear along the NaAlO₂-SiO₂ join due to clustering of (Na-Al) and (Si-Si) pairs.) The above observations are usually interpreted as arising from a "charge compensation effect". The dissolution of alum na in silica by the replacement of a tetravalent silicon in the tetrahedral network by a trivalent aluminum is energetically unfavourable because it results in a negative charge centre. However, upon addition of Na₂O this negative charge can be compensated by a Na⁺ ion placed next to the aluminum as illustrated in Fig. 5. Hence, the addition of Na₂O, up to a Na:Al ratio of 1:1, decreases the Gibbs energy of the solution markedly. To model this effect, we consider the $(NaAl)^{4+}$ associates to be a separate species. The ternary solution is then formally treated as a quaternary solution with components $NaO_{1/2}$, $AlO_{3/2}$, SiO_2 and $(NaAl)O_2$ where the mole fraction $X_{(NaAl)O_2}$ gives the concentration of the (NaAl) associates, while $X_{NaO_{1/2}}$ and $X_{AlO_{3/2}}$ are the concentrations of "free" Na and Al. The formation of the (NaAl) associates is formally treated through the Gibbs energy change of the following reaction among the components: $$NaO_{1/2} + AlO_{3/2} = (NaAl)O_2$$ (11) $$\Delta G_{(NaAl)O_2}^o = g_{(NaAl)O_2}^o - g_{NaO_{1/2}}^o - g_{AlO_{3/2}}^o \tag{12}$$ where $g_{(NAAI)O_2}^o$ is the standard Gibbs energy of the hypothetical pure component (NaAI)O₂. In the modified model, this is a parameter which is determined by optimization. We must now also introduce, as parameters, the Gibbs energies of formation of the following second-nearest-neighbour pairs: $$(Si - Si) + (NaAl - NaAl) = 2(NaAl - Si); \qquad \Delta g_{(NaAl)Si}^{o}$$ (13) $$(Al - Al) + (NaAl - NaAl) = 2(NaAl - Al), \qquad \Delta g_{g(NaAl)Al}^{o}$$ (14) $$(Na - Na) + (NaAl - NaAl) = 2(NaAl - Na); \qquad \Delta g_{(NaAl)Na}^{o}$$ (15) (One must clearly distinguish an (NaAl) associate from an (Na-Al) pair, the latter being a second-nearest-neighbour pair between a "free" Na and "free" Al.). The Gibbs energy of the solution is then given by a 4-component quasichemical expression (like Eq. (4) but with a fourth component, CO_z), where ΔS^{config} is given by randomly distributing all types of pairs: (Na-Na), (Al-Al), (Si-Si) (NaAl-NaAl), (Na-Al), (Na-Si), (NaAl-Na), (Al-Si), (NaAl-Al), and (NaAl-Si). Minimizing G subject to the mass balance constraints then gives all the equilibrium bond fractions as well as the equilibrium mole fraction of associates, $X_{(NaAl)O_2}$ #### 2-1. The Na₂O-Al₂O₃-SiO₂ system The Na₂O-Al₂O₃-SiO₂ system was optimized with the modified model. The coordination number $Z_{(NaAI)}$ was set equal to $Z_{Si} = 2.7548$. The expressions for Δg_{NaSI}^{o} and Δg_{AlSI}^{o} were taken from the binary optimizations, Eqs. (8,9). The parameters Δg_{NaAI}^{o} , $\Delta g_{(NaAI)Na}^{o}$ and $\Delta g_{(NaAI)AI}^{o}$ were all set to zero. The following optimized expressions were then obtained for $\Delta G_{(NaAI)O_2}^{o}$ and $\Delta g_{(NaAI)SI}^{o}$, both of which have large negative values: $$\Delta G^{o}_{(Na4I)O_{2}} = -146440 \quad J/mol \tag{16}$$ $$\Delta g_{(NaAl)Si}^{o} = -44750 + 16.736 T - 10479 Y_{Si} - 4184 \left(Y_{Al} / \left(Y_{Na} + Y_{Al} + Y_{(NaAl)} \right) \right) J/mol$$ (17) The standard Gibbs energies of all components and binary compounds were given previously [4, 9]. For albite (NaAlSi₃O₈), the standard Gibbs energy, shown in Table 1, was taken from the literature [22, 23]. The calculated liquidus surface is shown in Fig. 3b, which may be compared to the experimental [20] phase diagram in Fig. 3a. Calculations along the NaAlSi₃O₈-SiO₂ join and the NaAlSi₃O₈-Al₂O₃ join are compared to measurements [21] in Figs. 4 and 6 respectively. It should be noted that the first three terms of Eq. (17) for $\Delta g_{(NaAl)/S_1}^{\rho}$ are "binary" terms for the pseudobinary (NaAl)O₂-SiO₂ system, while the final term is a "ternary" term for the (NaAl)O₂-AlO_{3/2} – SiO₂ ternary "sub-system". That is, the very good agreement between calculations and measurements was obtained with only one ternary term for this sub-system, and with no ternary terms for the SiO₂-(NaAl)O₂-NaO_{1/2} sub-system. (The final term in Eq. (17) has virtually no effect in the SiO₂-(NaAl)O₂-NaO_{1/2} subsystem because the equivalent fraction of "free" Al³⁺, Y_{Al}, is very small in this sub-system.) In particular, the steep mullite liquidus, and the limiting liquidus slope at X_{SiO₂} = 1 in Fig. 4 are very well reproduced. Figure 1: Optimized⁴⁾ NaO_{0.5}-SiO₂ phase diagram. Experimental points : ■⁵⁾ ○⁶⁾ ▲⁷⁾ ▼⁸⁾ Figure 2: Optimized⁹⁾ AlO_{1.5}-SiO₂ phase diagram. Experimental points: $\Box^{10)} \Diamond^{11)}$ (b) calculated. Liquidus surface of the Na20-Al2OxSiO2 system in the SiOx-rich region: (a) as reported by Osborn and Muan²⁰; (composition in weight%; T in °C) Figure 3: Figure 4: Calculated liquidus surface along the albite $(NaAlSi_3O_8)$ – silica (SiO_2) join compared to experimental data²¹⁾ Figure 5: A simplified two-dimensional representation of the charge compensation effect in SiO_2 -rich $Na_2O-Al_2O_3$ - SiO_2 melts. Figure 6: Calculated liquidus surface along the albite $(NaAlSi_3O_8)$ – alumina (Al_2O_3) join compared to experimental data²¹⁾ #### 2-2. The K₂O-Al₂O₃-SiO₂ system The $K_2O-Al_2O_3-SiO_2$ system was also optimized with the same model. Experimental [20] and calculated ternary liquidus surfaces are compared in Fig. 7. The optimization of the binary K_2O-SiO_2 system was reported previously [4] along with values of the standard Gibbs energies of K_2O and of the binary compounds. Standard Gibbs energies of the ternary compounds leucite (KAlSi₂O₆) and feldspar (KAlSi₃O₈), taken from the literature [22, 24], are compiled in Table 1. The value of S_{298}^o of leucite was adjusted by 15.834 J/mol in the present optimization. The parameters Δg_{KAl}^o , $\Delta g_{(KAl)K}^o$ and $\Delta g_{(KAl)K}^o$ were all set to zero. Optimized expressions were obtained for $\Delta G_{(KAl)O_2}^o$, and $\Delta g_{(KAl)S_1}^o$: $$\Delta G^o_{(KA|O)} = -167360 \quad J/mol \tag{18}$$ $$\Delta g_{(KAI)Si}^{o} = -37681 + 26.397 T + 63153 Y_{Si} + \left(21916 - 25.104 T\right) \left(Y_{AI} / \left(Y_{K} + Y_{AI} + Y_{(KAI)}\right)\right) -7950 \left(Y_{K} / \left(Y_{K} + Y_{AI} + Y_{(KAI)}\right)\right) J/mol$$ (19) The expression for $\Delta g_{(K,14)/S_1}^{\sigma}$ contains two ternary parameters for the (KAl)O₂-AlO_{3/2}-SiO₂ "subsystem" and one ternary parameter for the SiO₂-(KAl)O₂-KO_{1/2} "sub-system". ### 2-3. The Na₂O-K₂O-Al₂O₃-SiO₂ system The liquidus surface of the SiO_2 -NaAlSiO₄-KAlSiO₄ system, as reported by Schairer [25], is shown in Fig. 8a. This liquidus was calculated using the present model, whereby the liquid is treated as consisting of 6-components, NaO_{1/2}-KO_{1/2}-AlO_{3/2}-(NaAl)O₂-(KAl)O₂-SiO₂. No additional parameters were used for the liquid. The denominators of the ternary terms in Eqs (17, 19) were set to $(Y_{Al} + Y_{Na} + Y_K + Y_{(NaAl)} + Y_{(KAl)})$ for interpolation into the multicomponent system. The solid solution of KAlSi₂O₆ (leucite) and NaAlSi₂O₆ (jadeite) was treated as ideal, with the standard Gibbs energy of jadeite, given in Table 1, taken from the literature [22, 23]. The solid solution of NaAlSi₃O₈ and KAlSi₃O₈ was treated as sub-regular, with the following optimized expression for the excess Gibbs energy: $$g^{E} = X_{NaA|Si_{3}O_{8}} X_{KA|Si_{3}O_{8}} \left(5063 + 4.184T + 6276X_{NaA|Si_{3}O_{8}} \right) J/mol$$ (20) The calculated liquidus surface in Fig. 8b is in good agreement with the measured liquidus. # 3. CONCLUSIONS In SiO_2 -rich Na_2O - Al_2O_3 - SiO_2 melts, a "charge compensation effect" occurs whereby the substitution of a trivalent Al^{3+} for a tetravalent Si^{4+} in the tetrahedral network is facilitated by association of the Al^{3+} with a Na^+ to form an $(NaAl)^{4+}$ associate. This effect has been successfully modeled by considering the $(NaAl)^{4+}$ associates as separate species in the melt which is then treated formally as a quaternary solution of the components $NaO_{1/2}$ - $AlO_{3/2}$ - $(NaAl)O_2$ - SiO_2 in the quasichemical pair approximation. The liquidus surface at high SiO_2 contents is reproduced very well, with only a few parameters. Good agreement has also been obtained for the K₂O-Al₂O₃-SiO₂ and Na₂O-K₂O-Al₂O₃-SiO₂ liquidus surfaces at high SiO₂ contents. The model is only applicable at molar ratios Si/(Na+K+Al) greater than about 0.6. As the SiO₂ content is decreased below this value, the network structure progressively breaks down, and it becomes easier for alumina to enter the solution even without charge compensation. It may be possible to extend the model to lower SiO₂ contents by permitting the Gibbs energy of formation of (NaAl)O₂, $\Delta G_{(NaAlO_2)}^{\circ}$, to vary with X_{SiO_2} , becoming less negative as X_{SiO_2} decreases. (b) calculated. Liquidus surface of the $K_2O-AI_2O_2$ -SiO2 system in the SiO_2 -rich region: (a) as reported by Osborn and Muan²⁰⁾, (composition in weight%; T in °C). Figure 7: Liquidus surface of the NaAlSiO₄-KAlSiO₄-SiO₂ system: (a) as reported by Schairer²⁵; (b) calculated. (composition in weight%, T in °C). #### 4. REFERENCES - A.D. Pelton and M. Blander, Proc. AIME Symposium on Molten Salts and Slags, L. Tahoe, Nevada, pp 281-294, TMS-AIME, Warrendale, PA (1984). - 2. A.D. Pelton and M. Blander, Metall. Trans., 17B, 805-815 (1986). - 3. M. Blander and A.D. Pelton, Geochim. et Cosmochim. Acta., 51, 85-95 (1987). - 4. P.Wu, G. Eriksson and A.D. Pelton, J. Am. Ceram. Soc., 76, 2059-64 (1993). - 5. F.C. Kracek, J. Phys. Chem., 34, 1583-98 (1930). - 6. F.C. Kracek, J. Am. Chem. Soc., 61, 2863-77 (1939). - 7. J.D'Ans and J. Loeffler, Z. Anorg. Allg. Chem., 191, 1-34 (1930). - 8. W. Haller, D. M. Blackburn and J. M. Simmons, J. Am. Ceram. Soc., 57, 120-126 (1974). - 9. G. Eriksson and, A.D. Pelton, *Metall. Trans.*, 24B, 807-816 (1993). - 10. S. Aramaki and R. Roy, J. Am. Ceram. Soc., 45, 229-42 (1962). - 11. F.J. Klug. S. Prochazka, and R.H. Doremus, J. Am. Ceram. Soc., 70, 750-59 (1987). - 12. P. Wu, "Optimization and Calculation of Thermodynamic Properties and Phase Diagrams of Multicomponent Oxide Systems", Ph.D. thesis, Ecole Polytechnique, Montreal (1992). - 13. P. Wu, G. Eriksson, A.D. Pelton and M. Blander, *Iron and Steel Inst. of Japan Journal*, 33, 25-34 (1993). - 14. S. Degterov and A.D. Pelton, J. Phase Equilibria, 17, 488-494 (1996). - 15. D. Degterov and A.D. Pelton, J. Phase Equilibria, 17, 476-87 (1996). - 16. S. Degterov and A.D. Pelton, Metall. and Mat. Trans., 28B, 235-42 (1997). - 17. E. Jak, S. Degterov, P.C. Hayes and A.D. Pelton, Fuel, 77, 77-84 (1997). - E. Jak, S. Degterov, P. Wu., P. Hayes and A.D. Pelton, Metall. and Mat. Trans., 28B, 1011-18 (1998). - 19. E. Jak, S. Degterov, P. Hayes and A.D. Pelton, Canad. Metall. Quart., 37, 41-47 (1998). - 20. E.F. Osborn and A. Muan, *Phase Equilibrium Diagrams of Oxide Systems*, The American Ceramic Society and the Edward Orton Jr. Ceramic Foundation, Columbus, Ohio (1960). - 21. J.F. Schairer and N.L. Bowen, Am. J. Sci., 254, 163 (1956). - 22. R.G. Berman and T.H. Brown, Contrib. Miner. Petrol., 89, 168-83 (1985). - S.K. Saxena, N. Chatterjee, Y. Fei and G. Shen, Thermodynamic Data on Oxides and Silicates, Springer-Verlag, NY (1993). - R.A. Robie, B.S. Hemingway and J.R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar Pressure and at Higher Temperatures, U.S. Gov't Printing Office, Washington, D.C. (1978). - 25. J. F. Schairer, J. Geol., 58, 514 (1950). # **ACKNOWLEDGEMENTS** This work was supported by the Natural Sciences and Engineering Research Council of Canada. A scholarship for P.C. from the "Fonds pour la formation de chercheurs et l'aide à la recherche (Fonds FCAR)" of QI ebec is also gratefully acknowledged. TABLE 1 Thermodynamic Properties Relative to Elements at 298.15 K | | Ref | 22,23 | 22,23 | 22 | 22 | 22,24 | |---|-----|-----------------------|----------------------------------------------|----------------------------------------------|------------|---------------------------------------------| | | 4 | | | 34.769000 | | | | | Ü | 10.706360 | 6.625669 | 18.364255 | 18.364255 | 9.592000 | | | P | -2415.5000 | -2005.1010 | -6772.4199 | -1941.0450 | •944.1000 | | | U | -78.92823 | -53.50264 | -84,16546 | -120,37252 | -78.57200 | | | q | | | -157,33000 | | | | | a | 393.63574 | 311.29297 | 664.35523 -157.33000 | 381.37231 | 195.86222* 271.14000 | | , | 9 | 224.41200 | 133,57395 | 214,14511 | 229.15691 | 195.86222* | | | 4 | -3919526.2 | -3025118.2 | -3970790.8 | -3959703.9 | -3029541.9 | | | | 298-1391 K -3919526.2 | 298-1300 K | 298-1436 K | | 298-1966 K | | | | NaAlSi3Og (albite) | NaAlSi ₂ O ₆ (jadeite) | KAlSi ₃ O ₈ (feldspar) | | KAlSi ₂ O ₆ (leucite) | $C_{p}(J \cdot mol^{-1} \cdot K^{-1}) = a + b(10^{-3})T + c(10^{5})T^{-2} + dT^{-1/2} + e(10^{-8})T^{-3} + f(10^{-6})T^{2}$