ÉCOLE POLYTECHNIQUE

Département de génie chimique

Programme de matériaux

MET 6208 ÉNERGÉTIQUE DES SOLUTIONS

CONTRÔLE I

Jeudi, le 29 octobre 2009

9h30 - 12h30

NOTES:

- All documentation permitted
- There are 7 questions

Le professeur : Arthur D. Pelton

Question 1 (3 points)

In a binary solution A-B,

 $s^E = \eta X_A X_B$

where ω and η are constants and X_A and X_B are the mole fractions.

Write an expression for the activity of component A, a_A, as a function of X_A, X_B and T.

Question 2 (2 points)

The system is a rock with a mass of 1.0 kg. In its initial state the rock is suspended 1.0 m above the ground. The rock is released and allowed to fall. Calculate the entropy change of the system, ΔS , and of the surroundings, ΔS_{surr} :

- (i) at the moment just before the rock strikes the ground,
- (ii) after the rock has struck the ground and come to rest.

Assume that the initial and final temperature of the rock and the surroundings is 298.15K.

<u>Data</u>: $g = 9.81 \text{ m/sec}^2$

Question 3 (2 points)

The integral molar enthalpy of mixing of Li-Mg liquid alloys at 1000K is given as a function of composition in the following table.

"Solution A" ia a pre-mixed solution containing 2.0 moles of Mg and 8.0 moles of Li.

"Solution B" is a pre-mixed solution containing 8.0 moles of Mg and 2.0 moles of Li.

Calculate the enthalpy change when solution A and solution B are mixed at 1000K to form 20.0 moles of a final solution containing 10.0 mol Mg and 10.0 mol Li at 1000K.

$\underline{\mathbf{X}}_{\mathbf{Mg}}$	Δh (J/mol)
0	0
0.1	-1092
0.2	-2343
0.3	-3586
0.4	-4653
0.5	-5368
0.6	-5384
0.7	- 4611
0.8	-3205
0.9	-1519
1.0	0

Question 4 (3 points)

For Pb solid:

h = -7283 + 23.465 T + 0.004889
$$T^2$$
 – 43914 T^{-1} J/mol and $s^{\circ}_{298.15}$ = 64.785 J/mol. K

Calculate the entropy of solid Pb at 600K.

Question 5 (3 points)

In a regular ternary solution with components A-B-C:

$$g^{E} = \omega_{AB}X_{A}X_{B} + \omega_{BC}X_{B}X_{C} + \omega_{CA}X_{C}X_{A}$$

where the ω_{ij} are constants and the X_i are the mole fractions.

Calculate an expression for the partial molar excess Gibbs energy of component A, g_A^E .

Question 6 (4 points)

(a) From the data supplied below, calculate the equilibrium constant of the following reaction at 1873 K:

$$2Fe(liq) + SiO_2(liq) = 2FeO(liq) + Si(liq)$$

(b) A liquid Fe-Si alloy solution is at equilibrium with a liquid slag solution FeO-SiO₂ at 1873 K. The composition of the slag is $X_{\text{FeO}} = X_{\text{SiO}_2} = 0.5$. Calculate the composition of the metallic solution as well as the equilibrium oxygen pressure. Use the data supplied below.

Data:
$$Fe(liq) + \frac{1}{2}O_2 = FeO(liq)$$
 $\Delta G_{1873}^o = -155348 \text{ J}$ $Si(liq) + O_2 = SiO_2(sol)$ $\Delta G_{1873}^o = -576159 \text{ J}$ $\Delta G_{1873}^o = 545 \text{ J}$

FeO-SiO₂ liquid solutions at 1873 K activity coefficients

X_{SiO_2}	γFeO	γ_{SiO_2}
0.7	0.920	1.575
0.6	0.834	1.908
0.5	0.856	1.856
0.4	0.959	1.694
0.3	1.202	1.504

Fe-Si liquid alloys at 1873 K		
\mathbb{X}_{Si}	$g_{Si}^{E}(J/mol)$	$g_{Fe}^{E}(J/mol)$
0	-103260	0
0.1	-90630	-720
0.2	-72520	-3950
0.3	-49900	-11560

Question 7 (3 points)

- (a) Calculate the configurational multiplicity, t^{config} , of one mole of a pure metal which contains X_v vacancies distributed randomly on the lattice sites. Using Boltzmann's equation and Stirling's approximation, calculate an expression for the molar configurational entropy s^{config} . (Note that X_v is very small.).
- (b) Since X_v is very small, the "solution" of vacancies in the metal can be considered to be a very dilute Henrian solution. That is the molar enthalpy and non-configurational entropy are very nearly linear functions of the vacancy content:

$$h = h^{o} + X_{v}h_{v}$$
$$s^{non-config} = s^{o} + X_{v}s_{v}$$

where h^o and s^o are the molar enthalpy and non-configurational entropy of vacancy-free metal, and h_v and s_v are constants where $(h_v - Ts_v) >> 0$.

Write an expression for the molar Gibbs energy g of the solution. By minimizing g with respect to X_v , derive an expression for the number of vacancies at equilibrium as a function of T, h_v and s_v .