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The Gibbs Energy Tree

Maxwell Phase Diagram
H, U F

N -
o

HisCpii),Hy S @i Vi

Mathematical methods are used to derive more Calculational
information from the Gibbs energy ( of phase(s) result derived
or whole systems ) from G
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Thermodynamic potentials and
their natural variables

Variables
Gibbs energy: G=G(T,p,n,...)
Enthalpy: = = (S,P,n,...)
Free energy: = A (T,V,n,...)
Internal energy: U = U (S,V, n,...)
Interrelationships:
= U-TS
= U+ PV
G=H-TS =U+PV-TS
& CRCT
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Thermodynamic potentials and
their natural variables
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Thermodynamic potentials and

their natural
Equilibrium condition:

or const. n ...

m for const.U,V,n ...
U
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Thermodynamic properties
from the Gibbs-energy

Temperature < ( an
p.n;

~ et

H=G+TS=G- T(e—Gj
oT ),,

(6Hj 0°G
oT ), oT
L p,n,-

Composition Integral quantity: G, H, S, c,

Partial Operator Gibbs-Duhem integration

Partial quantity: p, hy, s;, €,

Use of model equations permits to start at either end!
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Thermodynamic properties
from the Gibbs-energy

J.W. Gibbs defined the chemical potential _ 8_G
of a component as: Hi on.
HT,p
With G= (Z n,-)Gm (G is an extensive property!)

one obtains ;= 57 (Zn,)Gm

10
=G, + (Zn,)an G,
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Thermodynamic properties
from the Gibbs-energy

Transformation to mole fractions : 1, — X;

=G, + ai. G, — Z X; ai. G, I+ 5%,- -2 X"aix, = partial operator
0 0
h=H +—H —->» x—H
S S S S
CP Cpm Cpm Cpm
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Gibbs energy function
for a pure substance

G(T) (i.e. neglecting pressure terms) is calculated from the
enthalpy H(T) and the entropy S(T) using the well-known
Gibbs-Helmholtz relation: G=H - TS

In this H(T) is H=H,, [ 6dT
. T
and S(T) is S=3S, +L%qo/T- dT

Thus for a given T-dependence of the c,-polynomial (for
example after Meyer and Kelley) one obtains for G(7):

G(T=A+B-T+C-T-INnT+D-T*+E- T+ FT?
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Gibbs energy function
for a solution

* As shown above G, (T,x) for a solution ¢ consists
of three contributions: the reference term, the
Ideal term and the excess term.

e For a simple substitutional solution (only one
lattice site with random occupation) one obtains
using the well-known Redlich-Kister-Muggianu
polynomial for the excess terms:

i

G(T.x) =2 %G +RD _xInx +> > xx,> [ (T(X — X))’

i <j y=0

T Zzzxixjxk(xiﬂk(n + XjLij:k(D + X L (M) (x; + X; + X)

i <j =<k
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Equilibrium considerations
a) Stoichiometric reactions

Equilibrium condition:

G=min or dG=0

Reaction: nfA+ngB+...=nS +n;T + ...
Generally : ZV,B, -0

For constant T and p,i.e. dT =0 and dp =0,
and no other work terms:

dG= Z pian
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Equilibrium considerations
a) Stoichiometric reactions

For a stoichiometric reaction the changes dn, are
given by the stoichiometric coefficients n, and the
change in extend of reaction d&.

dn =v,dé

Thus the problem becomes one-dimensional.
One obtains:

dG=" uvdé =0

[see the following graph for an example of G = G(X) ]
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Equilibrium considerations
a) Stoichiometric reactions

T = 400K
>
= T = 500K
c
()
N
2
5 T = 550K

00 01 02 03 04 05 06 07 08 09 10
Extent of Reaction

Gibbs Energy as a function of extent of the reaction
2NH,;<=>N, + 3H, for various temperatures. It is assumed,
that the changes of enthalpy and entropy are constant.

CRCT




GTT-Technologies

Equilibrium considerations
a) Stoichiometric reactions

Separation of variables results in : g—f => v;u;=0
Thus the equilibrium condition
for a stoichiometric reaction Is: AG=> v, ;=0

Introduction of standard potentials p;° and activities a,
yields: Y = 'u;’ + RTIn a

One obtains: Vil +RTZ(V,-Ina,-)=O
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Equilibrium considerations
a) Stoichiometric reactions

It follows the Law of Mass Action:

AG =) v,u; =—RTn] | &

where the product
K=]]a’ K=exp| - 25
II of % RT

Is the well-known Equilibrium Constant.

The module permits a multitude of
calculations which are based on the Law of Mass Action.
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Equilibrium considerations
b) Multi-component multi-phase approach

Complex Equilibria

Many components, many phases (solution phases),
constant T and p :

G=min

with G= Zni:ui = Zni(/uio +RTn ai)

or G:Z[Zp:nj;) G’
) i
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Equilibrium considerations
b) Multi-component multi-phase approach

Massbalance constraint

Za,jn, =b; j=1,..,nof components b

Lagrangeian Multipliers M; turn out to be the
chemical potentials of the system components at
equilibrium:
G=Y bM,
J
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Equilibrium considerations
b) Multi-component multi-phase approach

Phase Components System Components

. C
aU_>J Gas Fe -

Q

Sag S0,

Lig. Fe Fe

Ca

<
«Q
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Mg

Example of a stoichiometric matrix for the gas-metal-slag system Fe-N-O-C-Ca-Si-Mg
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Equilibrium considerations
b) Multi-component multi-phase approach

Modelling of Gibbs energy of (solution) phases

G, = Gy(T.1.p)

Pure Substance G’ = u”* = G**(T,p) (stoichiometric)

Solution phase G’ = G»™
LG (-Tas)
+ G'(i’,eX

Choose appropriate reference state and ideal term, then check for deviations from ideality.

See Page 11 for the simple substitutional case.
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Equilibrium considerations
Multi-component multi-phase approach

Use the module to execute a
multitude of calculations based on the
complex equilibrium approach outlined
above, e.g. for combustion of carbon or
gases, agueous solutions, metal inclusions,
gas-metal-slag cases, and many others .

NOTE: The use of (such
as fixed heat balances, or the occurrence of a
predefined phase) makes this module even
more versatile.
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Phase diagrams as projections
of Gibbs energy plots

Hillert has pointed out, that what is called a
phase diagram is derivable from a projection of a
so-called property diagram. The Gibbs energy as
the property is plotted along the z-axis as a
function of two other variables x and y.

From the for the
the phase diagram can be derived as a
onto the

(See the following graphs for illustrations of this principle.)
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Phase diagrams
as projections of Gibbs energy plots
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Unary system: projection from u-T-p diagram
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Phase diagrams
as projections of Gibbs energy plots

Binary system: projection from G-T-x diagram, p = const.
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Phase diagrams
as projections of Gibbs energy plots
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Ternary system: projection from G-x;-x, diagram,
T = const and p = const
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Phase diagrams generated with

Use the module to generate a
multitude of phase diagrams for unary, binary, ternary
or even higher order systems.

NOTE: The module permits the choice of
T, P, m(as RT In a), a (as In a), mol (x) or weight (w)
fraction as axis variables. Multi-component phase diagrams

require the use of an appropriate number of constants, e.g.
In a ternary isopleth diagram T vs x one molar ratio has to
be kept constant.
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-Component System ( )

oU
G o),
Extensive S T Corresponding
variables v -P potentials
N Ma
Ng Mg
Ny M

dU =TdS-PdV +> pdn, = ¢4,dg,

Gibbs-Duhem: SdT+VdP+Zn,d,u, :Zqid¢, =0
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Choice of which always
give a

N-component system

(1) Choose n potentials: ¢, ¢,, ..., ¢, (n <N + 1)

(2) From the non-corresponding extensive variables
(9,41, Gpeos --- ), form (N+1-n) independent ratios

(Qers Qoizy - Q).

Example: Q = Ng" (n+1<i< N +1)
2.9,
JLn+l

(61, Do ooy &5 Qrits Qrisy - Quaa] @re then the (N+1) variables
of which 2 are chosen as axes

and the remainder are held constant.

CRCT

(:‘r



GTT-Technologies

Binary System

Extensive variables Chosen axes variables
and corresponding and constants
potentials
S T 0, =T
\% -P o, = -P constant
Npgo Mmgo ;= nMgO\
Ncao

&= (Mot Noso)

Ncao Hecao Qs =Ncao0 Moo Teas
& CRCT
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S T fl =T

"4 -P f,=-P

o, Ho, P = Ho,

N, Hs, ¢, = Hs,

re re Qs = nCr\ n
. ¢ Q5 — _Cr

nCr Cr q6 _ nFe nFe

CRCT
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System - improper

choice of axes variables

S T fi=T

V -P f,=-P

Ne Me f;=mg a. for x-axis and
Q, for y-axis

Nee Mg, Q, = (-, +’;ch +g) (NOT OK)

flor Mer Qs = (nFen:rnC ) (OK)

Requirement: O;jf =0 for <3
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System - improper
choice of axes variables

MZSCG

log(a,)

cementite

This is NOT atrue phase
diagram.

Reason: n. must NOT be
used in formula for mole
fraction when a. is an
axis variable.

FactSage users
are safe since they are
not given this particular
choice of axes variables.
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