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The theoretical background of 
FactSage

The following slides give an 
abridged overview
of the major 
underlying principles
of the 
calculational modules
of
FactSage.
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The Gibbs Energy Tree

Mathematical methods are used to derive more 
information from the Gibbs energy ( of phase(s)
or whole systems )
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Thermodynamic potentials and 
their natural variables
Variables

Gibbs energy: G = G (T,p, ni ,...) 
Enthalpy: H = H (S,P, ni ,...) 
Free energy: A = A (T,V, ni ,...) 
Internal energy: U = U (S,V, ni ,...) 

Interrelationships:
A = U − T⋅S
H = U + P⋅V
G = H − T⋅S  = U + P⋅V − T⋅S
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Thermodynamic potentials and 
their natural variables

S
T
G

−=
∂
∂

PP TT

S U V

H A

G

S VMaxwell-relations:

V
P
H
=

∂
∂

PTi
i n

Gµ
,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
VTin

A

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
PSin

H

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
VSin

U

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=and



GTT-Technologies

Thermodynamic potentials and 
their natural
Equilibrium condition:
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Thermodynamic properties
from the Gibbs-energy
Temperature

Composition
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Use of model equations permits to start at either end!

Gibbs-Duhem integrationPartial Operator

Integral quantity: G, H, S, cp

Partial quantity: µi, hi, si, cp(i)
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Thermodynamic properties
from the Gibbs-energy
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Thermodynamic properties
from the Gibbs-energy

Transformation to mole fractions : ii xn →
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Gibbs energy function
for a pure substance
• G(T) (i.e. neglecting pressure terms) is calculated from the 

enthalpy H(T) and the entropy S(T) using the well-known
Gibbs-Helmholtz relation:

• In this H(T) is

• and S(T) is

• Thus for a given T-dependence of the cp-polynomial (for 
example after Meyer and Kelley) one obtains for G(T):
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Gibbs energy function
for a solution
• As shown above Gm(T,x) for a solution ϕ consists 

of three contributions: the reference termreference term, the
ideal termideal term and the excess termexcess term. 

• For a simple substitutional solution (only one 
lattice site with random occupation) one obtains 
using the well-known Redlich-Kister-Muggianu
polynomial for the excess terms:
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Equilibrium considerations
a) Stoichiometric reactions
Equilibrium condition:

or

Reaction :  nAA + nBB + ... = nSS + nTT + ...
Generally :

For constant T and p, i.e.  dTdT = 0= 0 and dpdp = 0= 0,
and no other work terms:
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Equilibrium considerations
a) Stoichiometric reactions
For a stoichiometric reaction the changeschanges dndnii are 
given by the stoichiometric coefficients ni and the 
change in extend of reaction change in extend of reaction ddξξ.

Thus the problem becomes one-dimensional.
One obtains:

[see the following graph for an example of G = G(x) ]
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Equilibrium considerations
a) Stoichiometric reactions

Extent of Reaction ξ
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Gibbs Energy as a function of extent of the reaction
2NH3<=>N2 + 3H2 for various temperatures. It is assumed,
that the changes of enthalpy and entropy are constant.
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Equilibrium considerations
a) Stoichiometric reactions

Separation of variables results in :

Thus the equilibrium condition 
for a stoichiometric reaction is:

Introduction of standard potentials µi° and activities ai
yields:

One obtains:
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Equilibrium considerations
a) Stoichiometric reactions

It follows the Law of Mass ActionLaw of Mass Action:

where the product

or

is the well-known Equilibrium Constant.

∑ ∏−==∆
i i

iii
iaRTµG νν lnDD

∏=
i

i
iaK ν

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−=

RT
GK
D

exp

The REACTION module permits a multitude of 
calculations which are based on the Law of Mass Action.Law of Mass Action.
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Equilibrium considerations
b) Multi-component multi-phase approach
Complex Equilibria
Many components, many phases (solution phases), 
constant T and p :

with
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Equilibrium considerations
b) Multi-component multi-phase approach

Massbalance constraint

j = 1, ... , n of components b

Lagrangeian Multipliers Mj turn out to be the 
chemical potentials of the system components at 
equilibrium:
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Equilibrium considerations
b) Multi-component multi-phase approach

System ComponentsPhase Components
Fe N O C Ca Si Mg

Fe 1 0 0 0 0 0 0
N2 0 2 0 0 0 0 0
O2 0 0 2 0 0 0 0
C 0 0 0 1 0 0 0
CO 0 0 1 1 0 0 0
CO2 0 0 2 1 0 0 0
Ca 0 0 0 1 0 0 0
CaO 0 0 1 0 1 0 0
Si 0 0 0 0 0 1 0
SiO 0 0 1 0 0 1 0

Gas

Mg 0 0 0 0 0 0 1
SiO2 0 0 2 0 0 1 0
Fe2O3 2 0 3 0 0 0 0
CaO 0 0 1 0 1 0 0
FeO 1 0 1 0 0 0 0

Slag

MgO 0 0 1 0 0 0 1
Fe 1 0 0 0 0 0 0
N 0 1 0 0 0 0 0
O 0 0 1 0 0 0 0
C 0 0 0 1 0 0 0
Ca 0 0 0 0 1 0 0
Si 0 0 0 0 0 1 0

Liq. Fe

Mg 0 0 0 0 0 0 1

Example of a stoichiometric matrix for the gas-metal-slag system Fe-N-O-C-Ca-Si-Mg

aij j

i
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Equilibrium considerations
b) Multi-component multi-phase approach
Modelling of Gibbs energy of (solution) phases

Pure Substance (stoichiometric)

Solution phase
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Choose appropriate reference state and ideal term, then check for deviations from ideality.
See Page 11 for the simple substitutional case.
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Equilibrium considerations
Multi-component multi-phase approach

Use the EQUILIB module to execute a 
multitude of calculations based on the 
complex equilibrium approach outlined 
above, e.g. for combustion of carbon or 
gases, aqueous solutions, metal inclusions, 
gas-metal-slag cases, and many others . 

NOTE: The use of constraints in such calculationsconstraints in such calculations (such   
as fixed heat balances, or the occurrence of a     
predefined phase) makes this module even 
more versatile. 
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Phase diagrams as projections 
of Gibbs energy plots
Hillert has pointed out, that what is called a
phase diagram is derivable from a projection of a 
so-called property diagram. The Gibbs energy as 
the property is plotted along the z-axis as a 
function of two other variables x and y. 

From the minimum condition for the equilibrium
the phase diagram can be derived as a projection
onto the x-y-plane.

(See the following graphs for illustrations of this principle.)
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Phase diagrams 
as projections of Gibbs energy plots
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Phase diagrams 
as projections of Gibbs energy plots
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Ternary system: projection from G-x1-x2 diagram,
T = const and p = const

Phase diagrams 
as projections of Gibbs energy plots
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Phase diagrams generated with 
FactSage

Use the PHASE DIAGRAM module to generate a 
multitude of phase diagrams for unary, binary, ternary 
or even higher order systems. 

NOTE: The PHASE DIAGRAM module permits the choice of  
T, P,  m (as RT ln a), a (as ln a), mol (x) or weight (w) 
fraction as axis variables. Multi-component phase diagrams 
require the use of an appropriate number of constants, e.g. 
in a ternary isopleth diagram T vs x one molar ratio has to 
be kept constant.
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N-Component System (A-B-C-…-N)
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Choice of Variables which always 
give a True Phase Diagram

N-component system
(1) Choose n potentials: φ1, φ 2, … , φ n

(2) From the non-corresponding extensive variables
(qn+1, qn+2, … ), form (N+1-n) independent ratios
(Qn+1, Qn+2, …, QN+1).

Example:
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q
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[φ 1, φ 2, … , φ n; Qn+1, Qn+2, …, QN+1] are then the (N+1) variables 
of which 2 are chosen as axes 

and the remainder are held constant.
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MgO-CaO Binary System
Extensive variables 
and corresponding 
potentials

Chosen axes variables 
and constants

φ1 = T for y-axis

φ2 = -P constant

for x-axis

S T

V -P

nMgO µMgO

nCaO µCaO
( )CaOMgO

CaO

CaO

MgO

nn
nQ

nq

nq

+
=

⎪⎭

⎪
⎬
⎫

=

=

3

4

3



GTT-Technologies

Fe - Cr - S - O System
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Fe - Cr - C System - improper 
choice of axes variables

f1 = T (constant)

f2 = -P (constant)

f3 = mC                   → aC for x-axis and
Q4 for y-axis

(NOT OK)

(OK)
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Fe - Cr - C System - improper 
choice of axes variables
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This is NOT a true phase 
diagram.

Reason: nC must NOT be 
used in formula for mole 
fraction when aC is an 
axis variable.

NOTE: FactSage users 
are safe since they are 
not given this particular 
choice of axes variables.
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