FSstel List of Optimized Systems and References
Al-B
P.J. Spencer, 2006 (VLAB Project)
Al-Bi
M. Paliwal and In-Ho Jung, "Thermodynamic modeling of Al-Bi, Al-Sb, Mg-Al-Bi and Mg-Al-Sb systems", Calphad, 2010, vol. 34, pp. 51-63.
Al-C
M. Paek, I. Jung, unpublished results (2018)
See also: J Grobner, H L Lukas, F Aldinger, CALPHAD 20 (1996) 247-254.
Al-C-Fe
M. Paek, I. Jung, unpublished results (2018)
See also: K-G.Chin, H-J.Lee, J-H.Kwak, J-Y.Kang, B-J.Lee, J. Alloys and Compounds 505 (2010) 217-223; A.T. Phan, M. Paek, Y.-B. Kang, Acta Materialia, 79 (2014) 1-15.
Al-C-Fe-Mn
M.-S. Kim, Y. Kang, “Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe-Mn-Al-C system by experiment and thermodynamic modelling”, Calphad 51 (2015) 89-103.
Al-C-Mn
M. Paek, I. Jung, unpublished results (2018)
See also: K-G.Chin, H-J.Lee, J-H.Kwak, J-Y.Kang, B-J.Lee, J. Alloys and Compounds 505 (2010) 217-223.
Al-Ca
Y-B. Kang, CRCT, 2008
Al-Ca-Fe-Si
J. C. Angelezio, C. Servant, I. Ansara, CALPHAD, Vol. 18, No. 3 (1994), 273-309.
Al-Ca-Mg
Y-B. Kang, CRCT, 2008
Al-Ce
Y-B. Kang, CRCT, 2008
Al-Co
Z. Zhu, I. Jung, unpublished results (2018)
Al-Co-Ni
Z. Zhu, I. Jung, unpublished results (2019)
Al-Cr
S. Cui, I Jung, J Kim, S. Xin, “A coupled experimental and thermodynamic study of the Al-Cr and Al-Cr-Mg systems”, J. Alloys and Compounds, vol. 698, 2017, pp. 1038-1057.
Al-Cr-Cu
S. Cui and In-Ho Jung, “Thermodynamic modeling of the quaternary Al-Cu-Mg-Si system”, Calphad, Vol. 57, pp. 1-27, 2017.
Al-Cr-Mg
S. Cui, I Jung, J Kim, S. Xin, “A coupled experimental and thermodynamic study of the Al-Cr and Al-Cr-Mg systems”, J. Alloys and Compounds, vol. 698, 2017, pp. 1038-1057.
Al-Cr-Mn
S. Cui and In-Ho Jung, “Thermodynamic modeling of the Al-Cr-Mn ternary system”, Metall. Mater. Trans A, 2017, Vol. 48, 1383-1401, 2017.
Al-Cr-Ni
Z. Zhu, I. Jung, unpublished results (2018)
Al-Cr-Si
S. Cui and In-Ho Jung, unpublished work (2015).
Al-Cr-Ti
Z. Zhu, I. Jung, unpublished results (2018)
Al-Cu
N. Saunders, unpublished research, COST-507 (1991).
Al-Cu-Fe
H.Ohtani, H.Suda, K.Ishida, ISIJ International 37 (1997) 207-216.;
Al-Cu-Mg
S. Cui and In-Ho Jung, “Thermodynamic modeling of the quaternary Al-Cu-Mg-Si system”, Calphad, Vol. 57, pp. 1-27, 2017.
Al-Cu-Mg-Si
S. Cui and In-Ho Jung, “Thermodynamic modeling of the quaternary Al-Cu-Mg-Si system”, Calphad, Vol. 57, pp. 1-27, 2017.
Al-Cu-Mn
S. Cui and In-Ho Jung, unpublished work (2015).
Al-Cu-Si
S. Cui and In-Ho Jung, “Thermodynamic modeling of the quaternary Al-Cu-Mg-Si system”, Calphad, Vol. 57, pp. 1-27, 2017.
Al-Dy
Y-B. Kang, CRCT, 2008
Al-Er
Y-B. Kang, CRCT, 2008
Al-Eu
Y-B. Kang, CRCT, 2008
Al-Fe
M. Paek, I. Jung, unpublished results (2018)
M. Kim, Y. Kang, “Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase” J. Phase Equilibria and Diffusion 36(5), 2015, pp 453–470.
Al-Fe-Mg
J. Kim, In-Ho Jung, unpublished work (2016)
Al-Fe-Mg-Si
A. Prikhodowskij, RWTH Aachen, 2001.
J. Kim, In-Ho Jung, unpublished work (2016)
Al-Fe-Mn
M.-S. Kim, Y.-B. Kim, “Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase”, J. Phase Equilibria and Diff., 36 (2015), 453-470.
Al-Fe-Mn-N
Z. You, I.-Ho. Jung, unpublished work (2018).
Al-Fe-Mn-O
M. Paek, K. Do, Y. Kang, I. Jung, and J. Pak, “Aluminum Deoxidation Equilibria in Liquid Iron: Part III. Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O system”, Metallurgical and Materials Transaction B, 2016, vol. 47, pp. 2837-2847.
Al-Fe-Mn-Si
M. Paek, I. Jung, unpublished results (2018)
Al-Fe-Mn-Si-N
M. Paek, I. Jung, unpublished results (2018)
Z. You, and I. Jung, unpublished results (2018)
Al-Fe-Mn-Si-P
Z. You, and I. Jung unpublished results (2019)
Al-Fe-O
M Paek, K Do, Y Kang, I Jung, and J Pak, “Aluminum Deoxidation Equilibria in Liquid Iron: Part III. Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O system”, Metallurgical and Materials Transaction B, 2016, vol. 47, pp. 2837-2847.
Al-Fe-P
Z. You, M. Paek, I. Jung, unpublished results (2019)
Al-Fe-Zn
J. Kim, I.-H. Jung, P. Spencer, unpublished work (2016)
Al-Gd
Y-B. Kang, CRCT, 2008
Al-H
J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
Al-Hf
T. Wang et al. Journal of Phase Equilibria Vol. 23 No. 5 2002, pp. 416-423.
Al-Ho
Y-B. Kang, CRCT, 2008
Al-La
L. Jin, Y.-B. Kang, P. Chartrand and C.D. Fuerst, “Thermodynamic evaluation and optimization of Al-La, Al-Ce, Al-Pr, Al-Nd and Al-Sm systems using the Modified Quasichemical Model for liquids”, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 35(1), p.30-41, 2011.
Al-Lu
Y-B. Kang, CRCT, 2008
Al-Mg
P. Chartrand, CRCT, 2006; Vol.Data: F.Gemme, CRCT, 2003 (VLAB project); C.Aliravci, 2007 (GM Project)
Al-Mg-Zn
From FTlite database
Al-Mn
S. Cui, I. Jung, “Thermodynamic modeling of the Al-Cr-Mn ternary system”, Metall. Mater. Trans A, 2017, Vol. 48, 1383-1401.
Al-Mo
N. Saunders, COST 507 (1998) ISBN 92-828-3902-8 p 59-64
Al-N
Z. You, M. Paek, I. Jung, unpublished results (2018)
Al-Nb
C. He et al. Journal of Alloys and Compounds 637 (2015) 361–375
Al-Nb-Ni
GTT technology, 2023
Also see Y. Du et al. Intermetallics 11 (2003) 995–1013
Al-Nd
Y-B. Kang, CRCT, 2008
Al-Ni
Z. Zhu, I. Jung, unpublished results (2018)
Al-P
Z. You, M. Paek, I. Jung, unpublished results (2018)
Al-Pb
Y.-B. Kang, CRCT, 2009
Al-Pr
Y-B. Kang, CRCT, 2008
Al-Sb
M. Paliwal and In-Ho Jung, "Thermodynamic modeling of Al-Bi, Al-Sb, Mg-Al-Bi and Mg-Al-Sb systems"Calphad, 2010, vol. 34, pp. 51-63.
Al-Sc
Y-B. Kang, CRCT, 2008
Al-Si
J.-P. Harvey, M.A.Sc. thesis, Ecole Polytechnique, 2006
Al-Sm
Y-B. Kang, CRCT, 2008
Al-Sn
S.G.Fries, H.L.Lukas, COST 507 (1998) ISBN 92-828-3902-8, p.81-82
Al-Tb
Y-B. Kang, CRCT, 2008
Al-Ti
Z. Zhu, I. Jung, unpublished results (2018)
Al-Tm
Y-B. Kang, CRCT, 2008
Al-V
N. Saunders, COST 507 (1998) ISBN 92-828-3902-8 p 95-98
Al-W
N. Saunders, COST 507 (1998) ISBN 92-828-3902-8 p 103-108
Al-Y
FTlite
Al-Yb
Y-B. Kang, CRCT, 2008
Al-Zn
Liquid : P. Chartrand, CRCT, 2006 (VLAB Project); Vol.Data. F.Gemme, CRCT, 2003 (VLAB Project); solids S. –L. Chen and Y.A. Chang, Calphad, 17 (1993), pp. 113-124.
Al-Zr
COST 507, pp.112-116.
B-C
P.-J. Spencer, 2007 (VLAB project)
B-Co
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Cr
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Cu
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Dy
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Fe
M.-A. Van Ende, I.-H. Jung, unpublished work (2018);
M.-A. Van Ende and I.-H. Jung, “Critical thermodynamic evaluation and optimization of the Fe-B, Fe-Nd, B-Nd and Nd-Fe-B systems”, J. Alloy. Compd. 2013, Vol. 548, pp. 133–1542.
B-Fe-Nd
M.-A. Van Ende and I.-H. Jung, “Critical thermodynamic evaluation and optimization of the Fe-B, Fe-Nd, B-Nd and Nd-Fe-B systems”, J. Alloy. Compd. 2013, Vol. 548, pp. 133–1542.
B-Fe-Dy
M.-A. Van Ende, T.-S. Kim, Y. Kim, I.-H. Jung, “Thermodynamic optimization of the Dy-Nd-Fe-B system and application to the recovery and recycling of rare earth metal from NdFeB magnet”, Green Chemistry, 2015, vol. 17, 2246-2262.
B-Fe-Nd-Dy
M.-A. Van Ende, T.-S. Kim, Y. Kim, I.-H. Jung, “Thermodynamic optimization of the Dy-Nd-Fe-B system and application to the recovery and recycling of rare earth metal from NdFeB magnet”, Green Chemistry, 2015, vol. 17, 2246-2262.
B-Mn
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Mo
L.M. Pan, unpublished research in SGTE Solution Database, 1991.
B-N
FTlite database
B-Ni
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Pb
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Pr
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Si
FTlite database
B-Sn
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Tb
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Ti
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-V
L.M. Pan, unpublished research in SGTE Solution Database, 1991.
B-W
H. Duschanek, P. Rogl, J. Phase Equilib. 16 (1995), pp. 150-161.
B-Zn
M.-A. Van Ende, I.-H. Jung, unpublished work (2018)
B-Zr
X.-F. Sheng, CRCT, 2008 (GM Project)
Bi-Cu
C.P. Wang et al. / Journal of Alloys and Compounds 482 (2009) 67–72
Bi-Fe
T. Jantzen, GTT optimisation, 2003.
Bi-Sn
FTlite database
Bi-Zn
C Girard, Thesis (Marseille 1985); Bi-Ga-Zn
C-Ca
I.-H. Jung, 2020 (similar to FTlite)
C-Co
A. Fernandez Guillermet, Z Metallkde, 78 (1987) 700-709
C-Co-Cr
A. Kussofsky and B.Jansson, CALPHAD 21 (1997) 321-333
C-Co-Cr-W
B. Janssen, Inst. of Metals Report, Stockholm, (1987)
C-Co-Fe
A.Fernandez Guillermet, Z. Metallkde. 79 (1988) 317-329
C-Co-Fe-Ni
A. Fernandez Guillermet, Z.Metallkde. 79 (1988) 524-536
C-Co-Ni
A.Fernandez Guillermet, Z.Metallkde. 79 (1988) 524-536
C-Co-V
S. Huang et al. / Journal of Alloys and Compounds 385 (2004) 114–118
C-Co-W
A.Fernandez Guillermet, Metall.Trans. 20A (1989) p 935-956
C-Cr
B.J.Lee, CALPHAD 16 (1992) 121-149
C-Cr-Fe
J-O.Andersson, Met.Trans A, 19A (1988) 627-636; B.-J. Lee, Calphad 16 (1992) 121-149
Small modification for M23C6, M7C3 (In-Ho Jung, 2018)
C-Cr-Fe-Mn
B.-J. Lee, Metall.Trans.A 24A (1993) 1017-1025
C-Cr-Fe-Mo
Caian Qiu, ISIJ International 32 (1992) 1117-1127
C-Cr-Fe-Ni
Byeong-Joo Lee, unpublished revision (1993)
C-Cr-Fe-V
P.Gustafson, Inst.Met.Res.(Sweden) (1990) -Estimation
C-Cr-Fe-W
P.Gustafson, Metall.Trans. 19 (1988) 2547-2554; Byeong-Joo Lee, unpublished revision (1991)
C-Cr-Mn
B.-J. Lee, Metall.Trans.A 24A (1993) 1017-1025
C-Cr-Mo
Caian Qiu, ISIJ International 32 (1992) 1117-1127
C-Cr-Mo-V
J. Bratberg, Z. Metallkd. 96 (2005) 335-344
C-Cr-N
Z. You, M. Paek, I. Jung, unpublished results (2018)
C-Cr-Ni
M. Paek, I. Jung, unpublished results (2018)
C-Cr-Si
Y. Du, J.C. Schuster, L. Perring, J. Am. Ceram. Soc. 83 (2000) 2067-73
C-Cr-Ti
J.C. Schuster, Y. Du, Calphad 23 (1999) 393-408
C-Cr-V
P.Gustafson, Inst.Met.Res.(Sweden) (1990) -Estimation
C-Cu
K. Shubhank, Y.-B. Kang / CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 45 (2014) 127–137
C-Cu-Fe
K. Shubhank, Y.-B. Kang / CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 45 (2014) 127–137
C-Fe
M. Kim, Y. Kang, “Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase” J. Phase Equilibria and Diffusion 36(5), 2015, pp 453–470.
C-Fe-Mn
M. Kim, Y. Kang, “Thermodynamic Modeling of the Fe-Mn-C and the Fe-Mn-Al Systems Using the Modified Quasichemical Model for Liquid Phase” J. Phase Equilibria and Diffusion 36(5), 2015, pp 453–470.
C-Fe-Mn-V
W.Huang, TRITA-MAC 441, (1990)
C-Fe-Mo
J.O.Andersson, Calphad 12 (1988) p 9-23
C-Fe-Mo-W
P.Gustafson, Z.Metallkde. 79 (1988) 421-425
C-Fe-N
Z. You, M. Paek, I-H. Jung (2019), unpublished.
C-Fe-N-Nb-Ti
B.J. Lee, Met.Mater.Trans.A 32A (2001) 2423-2439
C-Fe-Nb
W. Huang, Z.Metallkde. 81 (1990) 397-404
C-Fe-Ni
A.Gabriel, P.Gustafson, I.Ansara, CALPHAD 11 (1987) 203-218
C-Fe-P
Z. You and I-H. Jung (2019), unpublished.
C-Fe-Si
M. Paek and I-H. Jung (2018), unpublished.
C-Fe-Ti
S.Jonsson, Metall.Mater.Trans.B 29B (1998) 371-384
L.F.S.Dumitrescu, M.Hillert, ISIJ International 39 (1999) 84-90
C-Fe-V
W.Huang, TRITA-MAC 432, (1990)
C-Fe-W
P.Gustafson, Metall.Trans. 18A (1987) p 175-188; P. Franke, private communication to SGTE, 2008
C-Hf
H. Bitterman, P. Rogl, J. Phase Equilibria, 18 (1997) 344-356.
C-Hf-Nb
P.J.Spencer, 2011, no ternary parameters required.
C-Hf-W
P.J.Spencer, 2011.
C-Mn
M. Paek, J. Pak, Y.-B. Kang, Phase equilibria and thermodynamics of Mn-C, Mn-Si, Si-C binary systems and Mn-Si-C ternary system by critical evaluation, combined with experiment and thermodynamic modeling. CALPHAD 46, 92-102 (2014)
C-Mn-Si
M. Paek, J. Pak, Y.-B. Kang, Phase equilibria and thermodynamics of Mn-C, Mn-Si, Si-C binary systems and Mn-Si-C ternary system by critical evaluation, combined with experiment and thermodynamic modeling. CALPHAD 46, 92-102 (2014)
C-Mn-V
W.Huang, TRITA-MAC 441, (1990); W. Huang, Metall. Trans. 22A (1991) 1911-1920
C-Mo
J.O.Andersson, Calphad 12 (1988) p 1-8
C-Mo-Ti
H.-J. Chung, J.-H. Shim, D.N. Lee, J. Alloys Comp. 282 (1999) 142-148
C-Mo-V
P.Gustafson, Inst.Met.Res.(Sweden) (1990, estim.); J. Bratberg, K. Frisk, Calphad 26 (2002) 459-476
C-Mo-W
P.Gustafson, Z.Metallkde. 79 (1988) 397-402
C-N-Nb
W.Huang, Z.Metallkde. 88 (1997) 63-68
C-N-Ti
B.J.Lee, Met.Mater.Trans.A 32A (2001) 2423-2439; S. Jonsson, Z. Metallkd. 87 (1996) 713-720
C-Nb
W.Huang, M.Selleby, Z.Metallkde. 88 (1997) 55-62
C-Nb-Ta
P.J.Spencer, 2011
C-Nb-Ti
B.J.Lee, Met.Mater.Trans.A 32A (2001) 2423-2439
C-Nb-V
P.J.Spencer, 2011
C-Nb-Zr
P.J.Spencer, 2011
C-Ni
M. Paek, I. Jung, unpublished work (2018)
A.Gabriel, C.Chatillon, I.Ansara, Calphad Vol 11 (1987) 203-218
C-Ni-Si
Y. Du, J.C. Schuster, Metall. Mater. Trans. 30A (1999) 2409-2418
C-Ni-Ti
Y. Du, J.C. Schuster: Z Metallkd. 89 (1998) 399-410
C-Ni-W
P.Gustafson, A.Gabriel, I.Ansara, Z.Metallkde. 78 (1986) 151-156
C-Si
M. Paek, I. Jung, unpublished work (2018);
J.Grobner, H L Lukas, F Aldinger, CALPHAD 20 (1996) 247-254
C-Ta (new parameters for liquid, fcc, bcc, hcp are necessary)
P.J.Spencer, 2011
C-Ta-W
P.J.Spencer, 2011
C-Ti
S.Jonsson, Z.Metallkde. 87 (1996) 703-712
C-Ti-W
S. Jonsson, Z. Metallkde. 87 (1996) 788-795
C-V
W. Huang, Z Metallkd 82 (1991) p 174-181
C-V-W
P.J.Spencer, 2011; J. Bratberg, Z. Metallkd. 96 (2005) 335-344
C-W
P. Gustafson, Mater.Sci.& Tech. 2 (1986) p 653-658
C-W-Zr
P.J.Spencer, 2011
C-Zr
A. Fernandez Guillermet; J. Alloys Compounds, 217 (1995) 69-89.
Ca-Co
Liquid miscibility gap – estimation; FTlite database.
Ca-Cr
Liquid miscibility gap – estimation; FTlite database.
Ca-Fe
S. Cui, M. Paliwal, In-Ho Jung, “Thermodynamic Optimization of Ca-Fe-Si System and its Applications to Metallurgical Grade Si-Refining Process”, Metall. Mater. Trans. E, 2014 vol. 1, pp. 67-79.
Ca-Fe-O
In-Ho Jung, unpublished work (2018)
Ca-Fe-S
In-Ho Jung, unpublished work (2018)
Ca-Fe-Si
S. Cui, M. Paliwal, In-Ho Jung, “Thermodynamic Optimization of Ca-Fe-Si System and its Applications to Metallurgical Grade Si-Refining Process”, Metall. Mater. Trans. E, 2014 vol. 1, pp. 67-79.
Ca-H
(only liquid) J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
Ca-Mg
J. Wang, Ph.D. Thesis, Ecole Polytechnique, 2014
Ca-Mo
Estimated work, FTlite database.
Ca-Ni
In-Ho Jung, unpublished work (2022), reoptimization based the work by D. Uremovich, F. Islam, M. Medraj, Science and Technology of Advanced Materials 7 (2006) 119–126.
Ca-P
Adamantia Lazou and In-Ho Jung, unpublished work (2022)
Ca-Si
M. Heyerman and P. Chartrand, “Thermodynamic Evaluation and Optimization of the Ca-Si System”, J. Phase Equilibria and Diffusion, 27 [3], 220-230, 2006
Ca-Sn
Jian Wang, Ph.D. Thesis, Ecole Polytechnique, Montreal, 2014
Ca-Ta
Estimated work, FTlite database.
Ca-Ta
Liquid miscibility gap, Estimated work, FTlite database.
Ca-Ti
Liquid miscibility gap, Estimated work, FTlite database.
Ca-V
Liquid miscibility gap, Estimated work, FTlite database.
Ca-W
Liquid miscibility gap, Estimated work, FTlite database.
Ca-Zn
P. Spencer, A.D. Pelton., Y.-B. Kang, P. Chartrand, and C. Fuerst, Calphad 32 (2007), pp. 423-431
Ce-Co
A. Gupta and I.-H. Jung, unpublished work, 2018.
Ce-Cr
SW. Jung and I.-H. Jung, unpublished work, 2022.
Ce-Fe
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = La, Ce, Pr, Nd and Sm”, Journal of Phase Equilibria and Diffusion, 2016, vol. 37(4), 438-458.
Ce-Mg
FTlite database.
Ce-Mn
J Kim, I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system: RE = La, Ce, Pr, Nd and Sm”, J. Alloy. Compd., 2012, vol. 525, pp. 191-201.
Ce-Ni
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Ce-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part I. Si-RE system (RE = La, Ce, Pr, Nd and Sm)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 253-272.
Co-Cr
Z. Zhu, In-Ho Jung, unpublished work (2018).
Co-Cr-Fe
In-Ho Jung, unpublished work (2000)
Co-Cr-Ni
T.Jantzen, GTT, 2003.
Z. Zhu, I.-H. Jung, unpublished work (2019)
Co-Cr-V
In-Ho Jung, unpublished work (2000)
Co-Cr-W
B.Janssen, Inst. of Metals Report, Stockholm, (1987)
Co-Cu
T.Nishizawa, K.Ishida, Bull. Alloy Phase Diags. 5 (1984) 161-165
Co-Cu-Fe
H.Ohtani, H.Suda, K.Ishida, ISIJ International 37 (1997) 207-216.
Co-Dy
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-Er
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-Fe
A.Fernandez Guillermet, High Temp. High Press. 19 (1988) 477-499
Co-Fe-Ni
A.Fernandez Guillermet, CALPHAD 13 (1989) 1-22
Co-Fe-N
A.Fernandez Guillermet, S.Jonsson, Z.Metallkde. 83 (1993) 165-175
Co-Fe-V
In-Ho Jung, unpublished work (2000)
Co-Fe-W
A.Fernandez Guillermet, Z.Metallkde. 79 (1988) 633-642
Co-Fe-Zn
In-Ho Jung, unpublished work, 2020.
Co-Gd
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-Ho
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-Mg
FTlite database
Co-Mn
W.Huang, Calphad 13 (1989) p 231-242
Co-Mo
A.Davydov, U.R.Kattner, J.Phase Equilibria 20 (1999) p 5-16
Co-N
A.F.Guillermet, S.Jonsson, Z.Metallkde. 83(1992)1 p 21-31
Co-Nb
K.C.H.Kumar, I.Ansara, P.Wollants, L.Delaey, J.Alloys and Compounds 267 (1998) p 105-112
Co-Nd
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-Ni
A. Fernandez Guillermet, Z Metallkde, 78 (1987) 639-647
Co-Ni-Ti
Z. Zhu, In-Ho Jung, unpublished work (2019).
Co-Ni-V
In-Ho Jung, unpublished work (2000)
Co-Ni-W
A. Fernandez Guillermet, TRITA-MAC 373, (1988)
Co-Pr
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-S
From FTmisc
Co-Sc
I.-H. Jung, unpublished work, 2022
Co-Si
In-Ho Jung, unpublished (2017).
Co-Sm
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-Ti
Z. Zhu, In-Ho Jung, unpublished work (2018).
Co-V
S. Huang et al. / Journal of Alloys and Compounds 385 (2004) 114–118
Co-W
A.F.Guillermet, Metall.Trans. 20A (1989) p 935-956
Co-Y
A. Gupta and I.-H. Jung, unpublished work, 2018.
Co-Zn
Junghwan Kim and In-Ho Jung, unpublished work, 2012.
Co-Zr
A.Durga, H. Kumar: CALPHAD 34(2010)200-205
Cr-Cu
S. Cui and In-Ho Jung, “Thermodynamic modeling of the Cu-Fe-Cr and Cu-Fe-Mn systems”, Calphad, vol. 56, pp. 241-259, 2017.
Cr-Cu-Fe
S. Cui and In-Ho Jung, “Thermodynamic modeling of the Cu-Fe-Cr and Cu-Fe-Mn systems”, Calphad, vol. 56, pp. 241-259, 2017.
Cr-Dy
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Er
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Eu
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Fe
S. Cui and In-Ho Jung, “Thermodynamic modeling of the Cu-Fe-Cr and Cu-Fe-Mn systems”, Calphad, vol. 56, pp. 241-259, 2017.
Cr-Gd
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Ho
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-La
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Lu
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Fe-Mn
B.J.Lee, Met.Trans. A, 24A (1993) 1919-1932; C. Qiu, Metall. Trans. 24A (1993) 2393-2409
Cr-Fe-Mn-N
Z. You, M. Paek, In-Ho Jung, unpublished results, 2018.
Cr-Fe-Mo
C. Qiu, CALPHAD, 16 (1992), N. 3, pp. 281-189.
Cr-Fe-N
Z. You, M. Paek, In-Ho Jung, unpublished results, 2018.
Cr-Fe-N-Ni
Z. You, M. Paek, In-Ho Jung, unpublished results, 2018.
Cr-Fe-Ni
M. Paek, In-Ho jung, unpublished results, 2018.
B.J.Lee, private communication (2000)
Cr-Fe-O
M. Paek, In-Ho Jung, unpublished work (2018)
Cr-Fe-P
Z. You, In-Ho jung, unpublished results, 2019.
Cr-Fe-O
M. Paek, In-Ho Jung, unpublished work (2018)
Cr-Fe-S
FTmisc database
Cr-Fe-V
B.J.Lee, TRITA-MAC 474, (1991)
Cr-Fe-W
P.Gustafson, TRITA-MAC 342 (1987)
Cr-H
J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
Cr-Mg
S. Cui, In-Ho Jung, Junghwan Kim, and S.. Xin, “A coupled experimental and thermodynamic study of the Al-Cr and Al-Cr-Mg systems”, J. Alloys and Compounds, vol. 698, 2017, pp. 1038-1057.
Cr-Mn
S .Cui and In-Ho Jung, “Thermodynamic modeling of the Al-Cr-Mn ternary system”, Metall. Mater. Trans A, 2017, Vol. 48, 1383-1401, 2017.
Cr-Mn-N
Z. You, M. Paek, In-Ho Jung, unpublished results, 2018.
K. Frisk, Calphad 17 (1993) 335-349; C. Qiu, Metall.Trans. 24A (1993) 2393-2409
Cr-Mn-Ni
P. Franke, private communication to SGTE, 2008
Cr-Mn-Ti
L.Y. Chen, C.H. Li, K. Wang, H.Q. Dong, X.G. Lu, W.Z. Ding, Calphad 2009, vol. 33, 658–663.
Cr-Mo
K..Frisk, P..Gustafson, Calphad 12 (1988) p 247-254
Cr-Mo-N
K..Frisk, TRITA-MAC 393 (1989); P. Franke, private communication to SGTE, 2013
Cr-Mo-Nb
Y. Du et al., CALPHAD, 29 (2005) 140–148
I.-H. Jung, unpublished work (2021): Liquid and solid solutions were modified.
Cr-Mo-Nb-Ni
I.-H. Jung, unpublished work (2021)
Cr-Mo-Ni
K..Frisk, TRITA-MAC 492 (1990)
Cr-N
Z. You, M. Paek, In-Ho Jung, unpublished results, 2018.
K.Frisk, TRITA-MAC 393 (1989)
Cr-N-Ni
Z. You, M. Paek, In-Ho Jung, unpublished results, 2018.
K.Frisk, TRITA-MAC 422 (1990)
Cr-N-Ti
P.Gustafson, Inst.Met.Res.(Sweden) (1990) - Estimation
Cr-N-V
P.Gustafson, Inst.Met.Res.(Sweden) (1990) - Estimation
Cr-N-W
P.Gustafson, Inst.Met.Res.(Sweden) (1990) – Estimation
Cr-Nb
J.G.Costa Neto, S.G.Fries, H.L.Lukas, Calphad 17 (1993) p 219-228
Cr-Nb-Ni
Y. Du et al., CALPHAD, 29 (2005) 140–148
I.-H. Jung, unpublished work (2021): Liquid and solid solutions were modified.
Cr-Nd
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Ni
Z. Zhu, In-Ho Jung, unpublished work (2018) – liquid is changed to MQM
A.Dinsdale, T.G.Chart, MTDS NPL, Unpublished work (1986)
Cr-Ni-W
P.Gustafson, CALPHAD 11 (1987) 277-292
Cr-P
Z. You, M. Paek, In-Ho Jung, unpublished results, 2018.
Cr-Pb
P. Chartrand, 2003
Cr-Pr
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-S
FTmisc database
Cr-Sc
FTlite database
Cr-Sm
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Tb
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Y
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cr-Yb
SW. Jung and I.-H. Jung, unpublished work, 2022.
Cu-Fe-Mn
S. Cui, In-Ho Jung, “Thermodynamic modeling of the Cu-Fe-Cr and Cu-Fe-Mn systems”, Calphad, vol. 56, pp. 241-259, 2017.
Cu-Fe-Ni
H.Ohtani, H.Suda, K.Ishida, ISIJ International 37 (1997) 207-216.
Cu-Fe-S
FTmisc database
Cu-Fe-Si
In-Ho Jung, unpublished work (2020)
Cu-Fe-Sn
H. Ohtani, H. Suda, K. Ishida, ISIJ International 37 (1997) 207-216.
Ok
Cu-Fe-V
H. Ohtani, H. Suda, K. Ishida, ISIJ International 37 (1997) 207-216.
Cu-H
J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
Cu-Mg-Si
S. Cui, In-Ho Jung, unpublished work (2015)
Cu-Mn
S. Cui, In-Ho Jung, “Thermodynamic modeling of the Cu-Fe-Cr and Cu-Fe-Mn systems”, Calphad, vol. 56, pp. 241-259, 2017.
H. Ohtani, H. Suda, K. Ishida, ISIJ International 37 (1997) 207-216.
Cu-Nd
A. Hussain, M.A. Van Ende, J. H. Kim and I.-H. Jung, “Critical thermodynamic evaluation and optimization of the Co-Nd, Cu-Nd and Nd-Ni systems”, Calphad, 2013, vol. 41, pp. 26-41.
Cu-Ni
A. Jansson, TRITA-MAC 340 (1987); Cu-Fe-Ni'
Cu-P
SGTE database
Cu-Pb
SGTE database
Cu-S
FTmisc database
Cu-Sb
SGTE database
Cu-Si
D. Kcang, In-Ho Jung, unpublished work (2010)
Cu-Sn
J.H.Shim, C.S.Oh, B.J.Lee, D.N.Lee, Z.Metallkde 87 (1996) 205-212.
Cu-Ti
SGTE database
Cu-V
BJL database, private communication 1999; Cu-V.
Cu-W
In-Ho Jung, unpublished work, 2020
Cu-Zn
M. Kowalski, P.J. Spencer, J Phase Equil 14(1993)4 p 432-438.
Cu-Zr
COST 507, pp.192-194.
Dy-Fe
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Dy-Mg
FTlite database.
Dy-Mn
J. Kim, M. Paliwal, Z. Zhou, H. Kim, and I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE = Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system”, J. Phase Equilibria and Diffusion, 2014, vol. 35 (6), pp. 670-694.
Dy-Ni
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Dy-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part II. Si-RE system (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 273-297.
Er-Fe
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Er-Mn
J. Kim, M. Paliwal, Z. Zhou, H. Kim, and I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE = Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system”, J. Phase Equilibria and Diffusion, 2014, vol. 35 (6), pp. 670-694.
Er-Ni
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Er-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part II. Si-RE system (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 273-297.
Fe-Gd
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Fe-H
J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
Fe-Hf
In-Ho Jung, unpublished work, 2020
Fe-Ho
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Fe-La
B. Konar, J. Kim, In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = La, Ce, Pr, Nd and Sm”, Journal of Phase Equilibria and Diffusion, 2016, vol. 37(4), 438-458.
Fe-La-Si
I.-H. Jung, unpublished work (2021)
Fe-Lu
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Fe-Mg
P. Chartrand, CRCT, 2006 (GM project)
Fe-Mg-O
In-Ho Jung, unpublished work (2018)
Fe-Mg-S
In-Ho Jung, unpublished work (2018)
Fe-Mg-Si
S. Cui, In-Ho Jung, unpublished work (2015)
Fe-Mn
S. Cui, In-Ho Jung, unpublished work (2015)
W. Huang, CALPHAD Vol 13 (1989) pp 243-252, TRITA-MAC 388 (rev 1989).
Fe-Mn-N
Z. You, M. Paek, In-Ho Jung, “Critical Evaluation and Optimization of the Fe-N, Mn-N and Fe-Mn-N Systems”, J. Phase Equilibria and Diffusion, 2018, vo. 39, pp. 650-677.
Fe-Mn-Nb
I.-H. Jung, unpublished work (2020)
Fe-Mn-Ni
P. Franke, private communication to SGTE, 2008;
In-Ho Jung, unpublished work (slightly modification), 2020.
Fe-Mn-O
M. Paek, K. Do, Y.-B. Kang, I. Jung, and J. Pak, “Aluminum Deoxidation Equilibria in Liquid Iron: Part III. Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O system”, Metallurgical and Materials Transaction B, 2016, vol. 47, pp. 2837-2847.
Fe-Mn-P
Z. You, I.-H. Jung, unpublished work (2019)
Fe-Mn-S
FTmisc database.
Fe-Mn-Si
M. Paek, In-Ho Jung, unpublished work (2018)
Fe-Mn-V
W.Huang, TRITA-MAC 441, (1990)
Fe-Mo
J. O. Andersson, Calphad 12 (1988) p 9-23
Fe-Mo-N
P.Gustafson, Inst.Met.Res.(Sweden) (1990) - Estimation
Fe-Mo-S
In-Ho Jung, private communication, 2004
Fe-Mo-Ni
K.Frisk, TRITA-MAC 428 (1990)
Fe-Mo-W
P.Gustafson, Z.Metallkde. 79 (1988) p 388-396
Fe-N
Z. You, M. Paek, In-Ho Jung, “Critical Evaluation and Optimization of the Fe-N, Mn-N and Fe-Mn-N Systems”, J. Phase Equilibria and Diffusion, 2018, vo. 39, pp. 650-677.
Fe-N-Nb
B.J.Lee, Met.Mater.Trans.A 32A (2001) 2423-2439
Fe-N-Ni
Z. You, M. Paek, In-Ho Jung, unpublished work (2018)
Fe-N-Si
Z. You, M. Paek, In-Ho Jung, unpublished work (2018)
Fe-N-Ti
B.J.Lee, Met.Mater.Trans.A 32A (2001) 2423-2439
Fe-N-V
H.Ohtani, KTH Report, (1990)
Fe-N-W
P.Gustafson, Inst.Met.Res.(Sweden) (1990) - Estimation
Fe-Nb
B.J.Lee, Met.Mater.Trans.A 32A (2001) 2423-2439
Fe-Nb-Ti
B.J.Lee, Met.Mater.Trans.A 32A (2001) 2423-2439
Fe-Nd
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = La, Ce, Pr, Nd and Sm”, Journal of Phase Equilibria and Diffusion, 2016, vol. 37(4), 438-458.
Fe-Ni
M. Paek, In-Ho Jung, unpublished work (2018)
A.Dinsdale, T.G.Chart, MTDS NPL, unpublished work (1986)
Fe-Ni-P
Z. You and In-Ho Jung, unpublished work, 2009
Fe-Ni-S
In-Ho Jung, private communication, 2004
Fe-Ni-Si
J. Miettinen, Calphad 23 (1999) 249-262
In-Ho Jung, unpublished work, 2020.
Fe-Ni-Ta
B. Yang, C. Guo, C. Li, Z. Du, Experimental Investigation and Thermodynamic Modelling
of the Fe-Ni-Ta System, J. Phase Equilib. Diffus. (2020) 41:500–521.
Fe-Ni-Ti
J. De Keyzer, et al. CALPHAD 33 (2009) 109-123
Z. Zhu and I.-H. Jung unpublished (2018)
Fe-Ni-W
A. Fernandez Guillermet,L.Ostlund, Met.Trans.17A (1986) 1809-1823
Fe-Ni-Zr
In-Ho Jung (2020), unpublished work
Based on S.Y. Yang et al.: Experimental investigation of phase equilibria in the Ni–Fe–Zr ternary system, J. Mater. Res., Vol. 31, 2016, 2407-2424.
Fe-P
Z. You, M. Paek, In-Ho Jung, unpublished work (2018)
Fe-P-S
In-Ho Jung, private communication, 2004
Fe-Pb
A. T. Dinsdale and D. Gohil, NPL, unpublished work (1987).
Update: SGTE Update database.'
Fe-Pr
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = La, Ce, Pr, Nd and Sm”, Journal of Phase Equilibria and Diffusion, 2016, vol. 37(4), 438-458.
Fe-S
FTmisc database
Fe-S-Zn
YE Lee and In-Ho Jung, unpublished work 2012
Fe-Sb
Klaus Hack, GTT, 2003.
Fe-Sc
Bikram Konar, In-Ho Jung, unpublished work (2021)
Fe-Si
S. Cui, In-Ho Jung, “Critical reassessment of the Fe-Si system”, Calphad, vol. 56, 2017, pp. 108-125.
Fe-Si-O
M. Paek, In-Ho Jung, unpublished work (2018)
Fe-Si-P
Z. You, In-Ho Jung, unpublished work (2019)
Fe-Si-S
In-Ho Jung, private communication, 2004
Fe-Sm
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = La, Ce, Pr, Nd and Sm”, Journal of Phase Equilibria and Diffusion, 2016, vol. 37(4), 438-458.
Fe-Sn
K C H Kumar, P Wollants, L Delaey, CALPHAD 20(1996)2 p 139-149.
Fe-Sn-S
In-Ho Jung, private communication, 2004
Fe-Ta
V.B. Rajkumar, K.C. Hari Kumar, Gibbs energy modelling of Fe–Ta system by Calphad
method assisted by experiments and ab initio calculations, CALPHAD, 48(2015)157–165
(slightly different by In-Ho Jung (2021))
Fe-Tb
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Fe-Ti
L.F.S.Dumitrescu, M.Hillert, N.Saunders, J.Phase Equilibria 19(1998) 441-448
Fe-Ti-O
M. Paek, In-Ho Jung, unpublished work (2018)
Fe-Ti-S
In-Ho Jung, unpublished work (2018)
Fe-Tm
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Fe-V
W.Huang, Z.Metallkde. 82 (1991) p 391-401
Fe-V-O
M. Paek, In-Ho Jung, unpublished work (2018)
Fe-V-S
In-Ho Jung, unpublished work (2018)
Fe-W
P.Gustafson, Metall.Trans. 18A (1987) p 175-188
Fe-W-S
In-Ho Jung, private communication, 2004
Fe-Y
Bikram Konar, Junghwan Kim and In-Ho Jung, “Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y”, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, Issue 4, pp 509–542.
Fe-Zn
J. Kim, In-Ho Jung, unpublished work, 2017.
Fe-Zn-Zr
In-Ho Jung, unpublished work 2022
Fe-Zr
C.Servant, C.Gueneau, I.Ansara, J.Alloys and Compounds 247 (1995) 19-26
Fe-Zr-O
In-Ho Jung, unpublished work, 2018.
Fe-Zr-S
In-Ho Jung, private communication, 2004
Dy-Mn
J. Kim and I.-H. Jung, “Thermodynamic modeling of the Mn-Y and Mn-Gd systems for the application of RE in Mg alloy development”, Can. Metall. Quarterly, Vol. 52 (2013) 311–320.
Gd-Ni
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Gd-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part II. Si-RE system (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 273-297.
H-Mg
J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
H-Ni
J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
H-Si
J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
H-Ti
T.-H. Kim, In-Ho Jung, unpublished work, 2018
H-V
J.-M Cheon, In-Ho Jung, unpublished work, 2018
H-Zn
(only liquid) J.-P. Harvey, Master Thesis, Ecole Polytechnique de Montreal (2006).
H-Zr
T.-H. Kim, In-Ho Jung, unpublished work, 2018
Hf-Mo
G. Shao, Intermetallics, 10, 2002, 429-434.
Hf-Nb
G. Ghosh, A. van de Walle, M. Asta, G.B. Olson, Calphad, 26 (2002) 491-511.
Hf-Ni
T. Wang, Z.Jin, Ji-C. Zhao, Z. Metallkunde 92 (2001) 441-446.
Hf-Si
FTlite database
Hf-Ta
A. Fernandez Guillermet, Z. Metallkunde 86 (1996) 382-387.
Hf-Ti
H. Bitterman, P.Rogl, J. Phase Equilibria 18 (1997) 24-47.
Hf-V
P.J.Spencer, June 2011, based on parameters for the Zr-V system.
Hf-W
G. Shao, Intermetallics, 10 (2002) 429-434.
Hf-Zr
L.Lin, L.Delaey, O.van der Biest, P.Wollants, Scripta Mat. 34 (1996) 1411-1416.
Ho-Mn
J. Kim, M. Paliwal, Z. Zhou, H. Kim, and I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE = Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system”, J. Phase Equilibria and Diffusion, 2014, vol. 35 (6), pp. 670-694.
Ho-Ni
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Ho-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part II. Si-RE system (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 273-297.
La-Mn
J Kim, I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system: RE = La, Ce, Pr, Nd and Sm”, J. Alloy. Compd., 2012, vol. 525, pp. 191-201.
La-Ni
A. Pachauri and I.-H. Jung, unpublished work, 2018.
La-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part I. Si-RE system (RE = La, Ce, Pr, Nd and Sm)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 253-272.
Lu-Mn
J. Kim, M. Paliwal, Z. Zhou, H. Kim, and I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE = Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system”, J. Phase Equilibria and Diffusion, 2014, vol. 35 (6), pp. 670-694.
Lu-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part II. Si-RE system (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 273-297.
Mg-Mo
Liquid miscibility gap, estimated, FTlite database
Mg-Mn
Y.-B. Kang, A.D. Pelton. P. Chartrand, P. Spencer and C. Fuerst, J. Phase Equil. Diff. 28 (2007), pp. 342-354
Mg-Nd
FTlite database
Mg-Ni
M.-A. Van Ende, and I.-H. Jung, unpublished (2015): liquid was changed to MQM and solid phases were reoptimized.
Mg-P
Estimated based on Ca-P system
Mg-Pr
FTlite database
Mg-Si
J.-P. Harvey, M.A.Sc. thesis, Ecole Polytechnique, 2006 (VLAB Project); Vol. Data F. Gemme, CRCT, 2003 (VLAB project)
Mg-Sn
FTlite database
Mg-Ta
Liquid miscibility gap, estimated, FTlite database
Mg-Tb
FTlite database
Mg-W
Liquid miscibility gap, estimated, FTlite database
Mg-Zn
Liquid: P.J. Spencer, 2006 (GM Project); Solids from COST-507
Mg-Zr
FTlite database
Mn-Mo
B.J.Lee, KRISS, unpublished work, 1993-1995
Mn-N
Z. You, M. Paek, In-Ho Jung, “Critical Evaluation and Optimization of the Fe-N, Mn-N and Fe-Mn-N Systems”, J. Phase Equilibria and Diffusion, 2018, vo. 39, pp. 650-677.
Mn-Nb
I.-H. Jung, unpublished work (2020)
Mn-Nd
J Kim, I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system: RE = La, Ce, Pr, Nd and Sm”, J. Alloy. Compd., 2012, vol. 525, pp. 191-201.
Mn-Ni
NPL, unpublished work (1989)
Mn-Ni-V
P. Franke, private communication to SGTE, 2008
Mn-P
Z. You, M. Paek, In-Ho Jung, unpublished work 2018
Mn-Pb
SGTE database
Mn-Pr
J Kim, I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system: RE = La, Ce, Pr, Nd and Sm”, J. Alloy. Compd., 2012, vol. 525, pp. 191-201.
Mn-S
FTmisc database
Mn-Sc
J Kim, I.-H. Jung, unpublished work (2012)
Mn-Si
M. Paek, J Pak, Y.-B. Kang, Phase equilibria and thermodynamics of Mn-C, Mn-Si, Si-C binary systems and Mn-Si-C ternary system by critical evaluation, combined with experiment and thermodynamic modeling. CALPHAD 46, 92-102 (2014)
Mn-Sm
J Kim, I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system: RE = La, Ce, Pr, Nd and Sm”, J. Alloy. Compd., 2012, vol. 525, pp. 191-201.
Mn-Sn
J. Miettinen: CALPHAD, 2001, 25(1), 43-58
Mn-Ta
Yan et al. J Alloy and Comp, 2021, 158715
Mn-Tb
J. Kim, M. Paliwal, Z. Zhou, H. Kim, and I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE = Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system”, J. Phase Equilibria and Diffusion, 2014, vol. 35 (6), pp. 670-694.
Mn-Ti
N.Saunders, COST 507 (1998) ISBN 92-828-3902-8 p 241-244
Mn-Tm
J. Kim, M. Paliwal, Z. Zhou, H. Kim, and I.-H. Jung, “Critical systematic evaluation and thermodynamic optimization of the Mn-RE system (RE = Tb, Dy, Ho, Er, Tm and Lu) with key experiments for the Mn-Dy system”, J. Phase Equilibria and Diffusion, 2014, vol. 35 (6), pp. 670-694.
Mn-V
W.Huang, Metall.Trans. 22A (1991) p 1911-1920
Mn-W
I-H. Jung, unpublished work, (2020)
Mn-Y
J. Kim and I.-H. Jung, “Thermodynamic modeling of the Mn-Y and Mn-Gd systems for the application of RE in Mg alloy development”, Can. Metall. Quarterly, Vol. 52 (2013) 311–320.
Mn-Zn
Y.-B. Kang, CRCT, 2005 (GM project)
Mn-Zr
H.J. Seifert, J. Groebner, F. Aldinger, F.H. Hayes, G. Effenberg, C. Baetzner, H. Flandorfer, P. Rogl, A. Saccone, R. Ferro, Proc.3rd. International Magnesium Conference, Ed. G. W. Lorimer, Inst.of Materials, London, 1997, pp. 257-270.;
Mo-N
In-Ho Jung, modification of liquid (2018)
K.Frisk, TRITA-MAC 393 (1989)
Mo-N-Nb
Mo-N-Ni
K.Frisk, TRITA-MAC 433 (1990)
Mo-Nb
P.Y.Chevalier, Thermodata SGTE report
Mo-Nb-Ni
Mo-nb-ni –> “Ni3M solid solution” (O) newly done FS82. – only addition of Ni3M solid solution.
Complete solid solutions: Ni3Ta-Ni3Nb, Ni3Mo-Ni3Ta : D0a structure. : done
Mo-Nb-Ni-Ta
Complete solid solutions: Ni3Ta-Ni3Nb, Ni3Mo-Ni3Ta : D0a structure. : Ni-Mo rich region??
Mo-Ni
K.Frisk, Calphad 14 (1990) p 311-320
Changed to Cui et al.MMTA. 1999, p.2735
Mo-Ni-Ta
Y. Cui, X. Lu, and Z. Jin, Experimental Study and Thermodynamic Assessment of the Ni-Mo-Ta Ternary System, Metall. Mater. Trans. A, 30A (1999) p. 2735
Mo-P
SGTE database
Mo-Pb
Liquid miscibility gap, estimated, FTlite database
Mo-Sc
In-Ho Jung, unpublished work 2022, reoptimization based on Wang et al. Journal of Phase Equilibria and Diffusion Vol. 36 No. 1 2015
Mo-Si
C.Vahlas, P.Y.Chevalier, E.Blanquet, Calphad 13 (1989) p 273-292
Mo-Ta
Y. Cui, Private communication to SGTE, 1999.
Mo-Ti
H.-J. Chung, J.-H. Shim, D.N. Lee, J. Alloys Comp. 282 (1999) 142-148
Mo-V
J. Bratberg, K. Frisk, Calphad, vol. 26 (2020) 459-476
Mo-W
P.Gustafson, Z.Metallkde. 79 (1988) p 388-396
Mo-Zn
Liquid miscibility gap, estimated, FTlite database
N-Nb
W.Huang, Metall.Mater.Trans.A, 27A (1996) 3591-3600
N-Nb-Ti
B.J.Lee, Met.Mater.Trans.A 32A (2001) 2423-2439
N-Ni
K.Frisk, Z.Metallkde. 82 (1991) p 59-66;
N-Si
Z.You, M. Paek, In-Ho Jung, unpublished work, 2018
N-Si-Ti
X. Ma, C. Li, W. Zhang, J.Alloys.Comp. 394 (2005) 138-147
N-Ta
SGTE database (only Liquid)
N-Ti
K Zeng, COST 507 (1998) ISBN 92-828-3902-8 p 253-255;
-> (update the phase diagram figure)
N-V
H.Ohtani, M.Hillert, Calphad 15 (1991) p 11-24
N-W
A.F.Guillermet, S.Jonsson, Z.Metallkde. 84 (1993) p 106-117
Liquid slight different
Nb-Ta
W Xiong, Y Du, Y Li, B Y Huang, H H Xu, H L Chen, Z Pan, Calphad, 28 (2004) 133-140.
Nb-Ni
A. Bolcavage, U.R. Kattner, J. Phase Equilibria 17 (1996) 92–100.
I.-H. Jung, unpublished work (2021): Liquid was modified to MQM, and Ni6Nb7 was slightly modified.
Nb-Ti
N.Saunders, COST 507, Final Report, Volume 2 (1998) 256-260
Nb-V
K.C.H.Kumar, P Wollants, L Delaey, CALPHAD 18(1994)1 p 71-79.
Nb-W
W.Huang, Private Communication (1995)
Nb-Zr
A.F. Guillermet, Z. Metallkde. 82 (1991), pp. 478-487.
Nd-Ni
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Nd-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part I. Si-RE system (RE = La, Ce, Pr, Nd and Sm)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 253-272.
Ni-P
Z. You, M. Paek, In-Ho Jung, unpublished work (2018)
Ni-Pb
P. Chartrand, CRCT, 2003 (VLAB project)
Ni-Pr
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Ni-S
FTmisc database
Ni-Sc
Z.Cao Thermochimica Acta 586(2014)
Ni-Si
D Kang, In-Ho Jung, unpublished work (2010)
Ni-Sm
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Ni-Sn
S.J. Baek, I.-H. Jung, unpublished work (2020)
Ni-Ta
C. Zhou, C. Guo, C. Li, Z. Du, Thermochimica Acta 666 (2018) 135–147.
(changed in FSStel82)
Ni-Tb
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Ni-Ti
Z. Zhou, In-Ho Jung, unpublished work (2018)
Ni-V
J.Korb, K.Hack, COST 507 (1998) ISBN 92-828-3902-8 p 261-263
Ni-W
P.Gustafson, A.Gabriel,I.Ansara, Z.Metallkde. 78 (1987) p 151-156
Ni-Y
COST 501
Ni-Zn
In-Ho Jung, unpublished work 2022 : only liquid phase modeled.
Ni-Zr
G. Ghosh, J.Mater.Res. 9 (1994), pp. 598-616.
P-Sb
SGTE database
P-Si
I.-H. Jung, Y. Zhang, “Thermodynamic calculations for the dephosphorization of silicon using molten slag”, JOM, 2012, 64 (8), pp. 973-981.
P-Sn
A. Pachauri and I.-H. Jung, unpublished work, 2018.
P-Zn
A. Pachauri and I.-H. Jung, unpublished work, 2018.
Pb-Sb
SGTE database
Pb-Si
SGTE database
Pb-Sn
SGTE database
Pb-Zn
T Jantzen, P J Spencer, Calphad 22(1998)3 p 417-434.
Pb-Zr
SGTE database
Pr-Si
J. Kim, In-Ho Jung, “Critical evaluation and thermodynamic optimization of the Si-RE systems: Part II. Si-RE system (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y)”, J. Chem. Thermodynamics, 2015, vol. 81, pp. 273-297.
S-Fe-Zn
YE Lee and In-Ho Jung, unpublished work 2012
S-Sn
In-Ho Jung, unpublished work 2022
S-Zn
YE Lee and In-Ho Jung, unpublished work 2012
Sb-Si
FTlite database
Sb-Zn
L A Zabdyr, Calphad 21(1997)3 p 349-358.
Sc-Si
J. Kim, In-Ho Jung, unpublished (2012).
Sc-V
In-Ho Jung, unpublished work 2022.
Si-Sn
M.H.G.Jacobs, P.J.Spencer, Calphad 20 (1996) 89-91
Si-Sn-Ti
C. Tiwary, M. Paliwal, S. Kashyap, P. Pandey, S. Sarkar, I. Kundu, S. Bhaskar, In-Ho Jung, K. Chattopadhyay, D. Banerjee, Materials Science & Engineering A, Vol. 770, 2020, 138472.
Si-Ta
C. Vahlas, P-Y. Chevalier, E. Blanquet, CALPHAD 13 (1989) 273-292.
Si-Ti
H. Rong, In-Ho Jung, unpublished work, 2011
Si-V
M.H.Rand, COST 507 (1998) ISBN 2-87263-156-9, p 182
Si-W
C.Vahlas, P.Y.Chevalier, E.Blanquet, Calphad 13 (1989) p 273-292
Si-Zn
M. H. G. Jacobs, P J Spencer, Calphad 20 (1996) 3 p 307-320
Si-Zr
COST 507, pp. 280-283.
Sn-Ti
Kevin Han, In-Ho Jung, unpublished work, 2011.
Sn-V
Kevin Han, In-Ho Jung, unpublished work, 2011.
Sn-Zn
S. Fries, H. L. Lukas, COST 507 (1998) ISBN 92-828-3902-8 p 288-289.
Sn-Zr
COST 507, pp. 290-292.
Ta-Ti
N. Saunders in COST 507 (1998) ISBN 92-828-3902-8 p 203-296.
Ta-V
C.A. Danon, C. Servant. Journal of Alloys and Compounds, 366 (2004) 191-200;
Ta-W
A.F. Guillermet, W. Huang, unpublished research, KTH, 1995.
Ta-Zr
A. Fernandez Guillermet, J. Alloys Compounds, 226 (1995) 174-184.
LIQUID and BCC phases modified by P.J. Spencer, June 2011.
Ti-V
N.Saunders, COST 507 (1998) ISBN 92-828-3902-8 p 297-298
Ti-W
N.Saunders, COST 507 (1998) ISBN 92-828-3902-8 p 299-302
Ti-Zn
In-Ho Jung, unpublished work 2022, reoptimization based on K. Doi, S. Ono, H. Ohtani, M. Hasebe: J. Phase Equilib. Diff., 2006, 27(1), 63-74
Ti-Zr
K.C. Hari Kumar, P.Wollants, L.Delaey, J. Alloys Compounds, 206 (1994) 121-7.
V-W
J. Bratberg, Z. Metallkde. 96 (2005) 335-344.
V-Zn
FTlite database
V-Zr
J.Korb, K.Hack, in COST507, Thermochemical Database for Light Metal Alloys,
Volume 2, eds. I.Ansara, A.T. Dinsdale, M.H.Rand, July 1998, EUR 18499.
W-Zn
FTlite database
W-Zr
Thermodata, private communication to SGTE, July 2005.
Y-Zn
Zhu et al., Journal of Alloys and Compounds, Volume 641, 25 August 2015, Pages 261-271
Zn-Zr
In-Ho Jung, unpublished work 2022 (Zr-rich region is needed to be improved; no inverse liquid miscibility gap)