SGsold – SGTE Solder Alloy Phase Diagrams

(revised 2009)

 

TO OBTAIN,

-         A LIST OF ALL THE UNARY, BINARY AND TERNARY SYSTEMS WHICH HAVE BEEN              ASSESSED 

-         A LIST OF ALL ASSESSED PHASES IN EACH OF THE SYSTEMS 

-         A CALCULATED PHASE DIAGRAM FOR EACH OF THE LISTED BINARY SYSTEMS

 -         A CALCULATED PHASE DIAGRAM FOR EACH OF THE LISTED TERNARY SYSTEMS

-         ASSISTANCE WITH PHASE SELECTION    

CLICK ON "List of optimized systems and calculated binary phase diagrams." 

General 

The SGsold - SGTE Solder alloy phase database 2009 is based on the COST 531 project. This documentation contains as a supplement the calculation of significant  ternary systems. 

The 11 elements included in the database are, 

Ag,  Au,  Bi,  Cu,  In,   Ni,   Pb,   Pd,   Sb,  Sn,   Zn

 

From among these elements, there are some 53 completely assessed binary alloy systems. The database also includes 20 ternary systems and a large number of special isothermal sections for which assessed parameters are available for phases of practical relevance.

The systems now incorporate approximately 67 different solution phases and 74 stoichiometric intermetallic compound phases.

 

This version of the SGTE Solution Database thus represents a significantly upgraded general alloy database. The database is intended to provide a sound basis for calculations relating to the production, heat treatment, constitution, and application of a wide range of alloy types.

 

All the assessed binary systems included in the SGTE alloy database are described over all ranges of composition and temperature, i.e. the assessed data provide a good description of the complete phase diagrams and thermodynamic properties for the binary alloy systems concerned.

 

Although a large number of ternary interaction parameters are included for the different phases in the database, these are in many cases associated only with phases rich in a particular metal. As such, care should be exercised in calculating phase equilibria for other composition ranges of multi-component alloys. By referring to the listing of systems and phases for which assessed parameters are available, the user can determine whether proposed calculations for a particular higher-order system will be based on a complete set of assessed binary and ternary parameters  (at best) or summation of binary parameters only (at worst). Clearly the latter case, or use of incompletely assessed data sets, can lead to incorrect or unreliable results. 

 

In a binary system, if no assessed mixing parameters are available for a particular phase, the phase will be treated as ideal. Correspondingly, the properties of a ternary or higher-order phase will be calculated applying the appropriate models used in the database. This procedure may give useful results if the alloy compositions in question are close to a pure component or to a binary edge for which assessed data are available. However, results of calculations for other composition ranges should be treated with extreme caution. 

 

 

Composition Ranges

 

The database is intended to allow calculation over all ranges of composition, although, as mentioned above, the assessed data are often most reliable for metal-rich composition ranges.

 

Temperature Ranges

 

The database is generally most reliable for the temperature range of approximately 200oC to 2000oC, although the assessed data for some alloys containing high melting point metals are reliable to still higher temperatures.

 

 

Modeling

 

In the assessments, the liquid phase has been described using a simple substitutional solution approach based on the Redlich-Kister-Muggianu polynomial expression. Most of the solid phases have been described using sublattice models which include interstitials and vacancies where appropriate.

 

Use of the Database

The phase diagrams of all the binary and ternary systems listed above have been checked using FactSage. 

If there is the possibility of a miscibility gap (or 2 miscibility gaps) occurring in the LIQUID, FCC, BCC or HCP phase, the I-option (J-option) must be used in selecting that phase for the calculations.

The I-option also needs to be used with the ordered solid solutions, B2_BCC, which are based on the BCC disordered state (see below).

With this database it is strongly recommended to always select the option permitting one-component solutions to be selected.  This is done in the reactants window of the Equilib or Phase Diagram module by clicking on,

Data Search -> minimum solution components = 1

In FactSage the database has been modified to simplify the selection of species when the Equilib or Phase Diagram modules are being used.  Phases which are not possibly relevant to the calculation at hand will not appear on the menu window. Furthermore, if one now simply selects all the solution phases  and all the pure solid phases from SGsold which appear on the menu window, a correct calculation will result in most cases, with the I- or J-option (for possible immiscibility) automatically selected if possibly required.

 

 

References for SGsold - SGTE Solder alloy phase database 2009  

 

Binary Systems

 

Ag-Au

The Ag‐Au system has a simple isomorphous phase diagram showing complete 

solid solubility over the whole composition range.  The data are taken from 

the assessment of Hassam et al. [88Has]

References: 

[88Has]  Hassam, S., Gambino, M., Gaune‐Escard, M., Bros, J. P., Agren, J.: Metall. 

   Trans. 1988, 19A, 409‐416. 

 

Ag-Bi

This system exhibits a simple eutectic  type  phase  diagram  with  very  limited 

solubilities in terminal solid solutions at lower temperatures. The theoretical 

description is from the assessment of Lukas [98Luk] based on Zimmermann’s 

original work [76Zim]

References: 

[76Zim]  Zimmermann,  B.:  “Rechnerische  und  experimentelle  Optimierung 

   von  binären  und  ternären  Systemen  aus  Ag,  Bi,  Pb  und  Tl”,  thesis, 

   Universität Stuttgart, Germany, 1976. 

[98Luk]  Lukas, H.‐L., Zimmermann, B.: Unpublished work, 1998. 

 

Ag-Cu                 

The  adopted  assessment  for  the  Ag‐Cu  system  is  an  update  from  Lukas 

[98Luk] of his earlier published assessment [77Hay]

References: 

[77Hay]  Hayes, F. H., Lukas, H. L., Effenberg, G., Petzow, G.: Z. Metallkde. 1986, 

   77, 749‐754. 

[98Luk]  Lukas, H.‐L.: Unpublished work, 1998. 

 

 Ag-In                

Assessed data for this system were taken from [01Mos]. However, the model 

used for the ‐phase  (Ag In)  was  changed  to  make  it  compatible  with  that 2

utilized  for  the  ‐phase  in  the  Cu‐In  system  (CUIN_GAMMA).  This was 

necessary as complete solubility between the two binary phases exists in the 

Ag‐Cu‐In ternary system [88Woy]. The original work of [01Mos] also ignored 

the  high‐temperature  ‐phase (BCC_A2), which exists over a very limited 

temperature  range.  The description of this BCC‐phase was added to 

the assessment in the scope of the COST 531 Action so that the liquidus surface 

could be modelled correctly. The presence of this phase leads to extra invariant 

reactions at high‐temperatures that correspond to the metatectic decomposition of

 BCC_A2 to the HCP_A3 phase and at the liquid and to the peritectoid reaction 

 FCC_A1 + BCC_A2 —> HCP_A3. 

References: 

[88Woy]  Woychik, C. G., Massalski, T. B.: Met. Trans. A., 1988, 19A, 13‐21. 

[01Mos]  Moser,  Z.,  Gasior,  W.,  Pstrus,  J.,  Zakulski,  W.,  Ohnuma,  I.,  Liu,  X.  J., 

                Inohana, Y., Ishida, K: J. Electron. Mater., 2001, 30, 1120‐1128. 

 

 Ag-Ni                

The data for this system have been critically  assessed  within  the scope of  the 

COST  531  Action based on the experimental data from Tammann and Oelson

[30Tam], Stevenson and Wulff [61Ste],  Borukhin and Khayutin [74Bor],

Burylev and Ivanova [74Bur], Popel and Kozhurkov [74Pop], Ladet et al. [76Lad] 

Siewert and Heine [77Sie] and Xu et al. [96Xu].

Experimental work prior to 1987 has been reviewed by Singleton and Nash [87Sin]

New experimental data by Schmetterer et al.  [07Sch] have yet to be incorporated. 

References: 

[30Tam] Tammann, G., Oelson, W.: Z. Anorg. Chem., 1930, 186, 264‐266. 

[61Ste]  Stevenson, D. A., Wulff, J.: Trans. Metall. Soc., AIME 1961, 221, 271‐275.

[74Bor]  Borukhin,  L.  M.,  Khayutin,  S.  G.:  Strukt.  Faz.  Fazovye  Prevrashch. 

    Diagr. Sostoyaniya Met. Sist., 1974, 172‐174.  

[74Bur]  Burylev, B. P., Ivanova, V. D.: Tr. Krasnodar. Politekh. Inst., 1974, 63

    111‐113.  

[74Pop]  Popel, S. I., Kozhurkov, V. N.: Izv. Akad. Nauk SSSR, Met., 1974, 2, 49‐52.

[76Lad]   Ladet, J., Beradini, J., Cabane‐Brouty, F.:  Scr. Metall., 1976,  10,  195‐199.

[77Sie]  Siewert, T. A., Heine, R. W.: Metall. Trans. A, 1977, 8A, 515‐518. 

[87Sin]  Singleton, M., Nash, P.: Bull. Alloy Phase Diagrams, 1987, 8, 119‐121.  

[96Xu]  Xu, J., Herr, U., Klassen, T., Averback, R. S.:  J. Appl. Phys., 1996, 79, 

    3935‐3945.  

[07Sch]  Schmetterer, C., Flandorfer, H., Ipser, H.: Acta Mater. ,2008, 56, 155‐164.

 

 Ag-Pb                

The  most  recent  data  for  this  simple  eutectic  system  come  from  [00Luk]

The system  is  characterised  by  a  wide  region  of  solid  state  immiscibility 

between the two component elements, their mutual solid solubility being very 

limited. This dataset is based on original work by [76Zim]. 

References: 

[76Zim]  Zimmermann,  B.:  “Rechnerische  und  experimentelle  Optimierung 

    von  binären  und  ternären  Systemen  aus  Ag,  Bi,  Pb  und  Tl”,  thesis, 

   Universität Stuttgart, Germany, 1976. 

[00Luk]  Lukas, H.‐L..: Unpublished work, 2000. 

 

 Ag-Pd                

The data for this system are from the assessment of Ghosh et al. [99Gho]. The 

Data imply a miscibility gap in the FCC_A1 phase at low temperatures. 

The partial and integral enthalpies of mixing were determined at 1400 °C

by Luef et al. [05Lue] but have yet to be incorporated into the assessment.  

References: 

[99Gho]  Ghosh, G., Kantner, C., Olson, G.‐B.: J. Phase Equilb., 1999, 20, 295‐308. 

[05Lue]  Luef,  Ch.,  Paul,  A.,  Flandorfer,  H.,  Kodentsov,  A.,  Ipser,  H.:  J.  Alloys 

Compd., 2005, 391, 67‐76. 

 

 Ag-Sb 

The data for the Ag‐Sb system are taken from a recent assessment  by Zoro et al. 

[07Zor] carried out within the framework of COST 531 and based on their

new  experimental  data.  The calculated diagram is broadly similar to that from 

the earlier assessment of Oh  et  al.  [96Oh]. The solubility of Ag in solid Sb has been

ignored. 

References: 

[96Oh]  Oh, C. S., Shim, J. H., Lee, B. J., Lee, D. N.: J. Alloys Compd., 1996, 238

    155‐166. 

[07Zor]  Zoro, E., Servant, C., Legendre, B.: J. Phase Equil. Diff.: 2007, 28, 250‐257.

               

 Ag-Sn                

The data for the Ag- Sn system are taken from 

the assessment of Oh et al. [96Oh] 

The data for the FCC_A1 phase have been remodelled within the scope of the COST 531

 project to be compatible with the adopted data for FCC_A1 (Sn) [SGTE4]

The Gibbs energy expression of the liquid phase was reoptimised using the raw enthalpy 

 of mixing data from Flandorfer  [05Fla] in addition to the other experimental data

 compiled by Chevalier [05Che].  

References: 

[96Oh]  Oh, C.‐S., Shim, J.‐H., Lee, B.‐J., Lee, D. N.: J. Alloys Compd., 1996, 238

    155‐166.  

[05Che]  Chevalier, P. Y.: Unpublished work, 2005. 

[05Fla]  Flandorfer, H.: Unpublished work, 2005. 

 

Ag-Zn                

The  data  for  this  system  are  from  an  unpublished  assessment  by  Fries  and 

Witusiewicz  [02Fri].  This  is  a  more  rigorous  modelling  of  the  system  than 

documented in their later published data assessment [06Wit]

References: 

[02Fri]  Fries, S. G., Witusiewicz V. T.: Unpublished work, 2002. 

[06Wit]  Witusiewicz, V. T., Fries, S. G., Hecht, U., Drevermann, A., Rex, S.: Int. 

    J. Mater. Res., 2006, 97, 556‐568. 

 

Au-Bi                

The data for this system ara taken from a recent assessment by Servent et al. [06Ser] carried out within the framework of COST 531 using new experimental 

 data [05Zor]. The major difference between this assessment and that of 

 Chevalier [88Che] is the revised solubility of Bi in Au (FCC_A1) and the 

temperature of the invariant reaction, AU2BI_C15 → FCC_A1 + RHOMBO_A7. 

The new theoretical description is in better agreement with the experimental 

data. 

References: 

[88Che]  Chevalier, P. Y.: Thermochimica Acta, 1988, 130, 15‐24. 

[05Zor]  Zoro, E., Boa, D., Servant, C., Legendre, B.: J. Alloys. Compd., 2005, 398

   106‐112. 

[06Ser]  Servant, C., Zoro, E., Legendre, B.: CALPHAD, 2006, 30, 443‐448. 

 

Au-Cu     

Data for the Au‐Cu system are taken from the critical assessment  of 

Sundman et  al.  [98Sun].  The  authors  presented  two  datasets  in  their 

publication, the first taking into account and modelling the low  temperature 

chemical  ordering  phases  derived  from  a  FCC  lattice  and  the  second  dataset 

ignoring the chemical ordering. The second dataset has been selected  for 

the COST 531 database, as this feature does not have a significant influence in 

the systems for lead free solders. 

References: 

[98Sun]  Sundman, B., Fries, S. G., Oates, W. A.: CALPHAD, 1998, 22, 335‐354. 

 

Au-In                

There are a number of assessments of this system in the scientific literature, 

the  major  differences  between  them  being  associated  with  the  homogeneity 

range of the DHCP phase in the Au‐rich side of the system and its 

decomposition with decreasing temperature. The data accepted for this work 

was  taken  from [03Liu]  in  order  to  be  compatible  with  experimental  data 

available for the Au‐In‐Sn ternary system. The phase diagram is highly complex 

with  many  intermetallic  compounds.  Owing  to  this  complexity,  it was not 

possible  to  label  all  phases  in  figure;  the  unlabelled  phase  at  x(In)   0.2 is 

AUIN_BETA. The AU3IN (ε) phase was modelled as a single stoichiometric 

phase, whereas two variants have been reported experimentally;  and the low 

temperature  variant  ’. An ordering reaction between the two phases takes 

place at approximately 339.5 °C [MAS]

References: 

[03Liu]  Liu, H. S., Cui, Y., Ishida, K., Jin, Z. P.: CALPHAD, 2003, 27, 27‐37.

 

 

Au-Ni                

Data for the AuNi system are taken from a recent 

assessment by Wang et al. [05Wan]

This  agrees  much  better  with  experimental  data  for the system than earlier

 assessments [99Mor][05Liu]. Use of the new data did not adversely affect agreement 

between calculated and experimental properties for the ternary Au-Ni-Sn system which had

been based on the assessment of Liu et al. [05Liu].

References: 

[99Mor]  Morioka, S., Hasebe, M.: J. Phase Equil., 1999, 20, 244‐257. 

[05Liu]  Liu, X. J., Knaka, M., Takaku, Y., Ohnuma, I., Kainuma, R., Ishida, K.: J. 

    Electron. Mater., 2005, 34, 670‐679. 

[05Wan] Wang, J., Lu, X.‐G., Sundman, B., Su, X.: CALPHAD, 2005, 29, 263‐268.  

 

Au-Pb                

The dataset for this system was taken from v.4.4 of the SGTE solution database 

[SGTE], and the source of this data is the thesis of Nabot [86Nab]. The system 

is fairly simple and contains three peritectically forming intermetallic 

compounds,  each  one  being  modelled  as  a  stoichiometric  phases.  According 

to [MAS],  there  is  some  uncertainty  as  to  the  temperature  range  over  which 

the AUPB3 phase is stable. There are reports that it decomposes below 52 °C. 

References: 

[86Nab]  Nabot, J.‐P.: Thesis, LTPCM, Grenoble, France, 1986. 

 

Au-Pd                

The Au‐Pd system has a simple isomorphous phase diagram showing complete 

solid solubility over the whole composition range. The thermodynamic data for 

this  system  was  taken  from  the  v.4.4  of  the  SGTE  solution  database  [SGTE]

Ordering in the solid state has been confirmed at compositions of Au3Pd, AuPd

and AuPd3 [MAS], but it has not been modelled here. 

 

Au-Sb                

The data for the Au‐Sb system were taken from a recent assessment  by Zoro et al. 

[07Zor] which incorporated earlier assessed data from Kim et al. [02Kim].

Zoro et al. found that the assessment of Kim et al. was in better agreement with 

experimental measurements of phase equilibria they had carried out than an 

earlier assessment of Chevalier [89Che]. 

References: 

[89Che]  Chevalier, P. Y.: Thermochimica Acta, 1989, 155, 211‐225. 

[02Kim]  Kim, J. H., Jeong, S. W., Lee, H. M.: J. Electron. Mater., 2002, 31, 557‐563.

[07Zor]  Zoro, E., Servant, C., Legendre, B.: J. Phase Equil. Diff., 2007, 28, 250‐257.

Au-Sn                

The critically assessed data for the Au‐Sn system from Liu et al. [03Liu1] were 

adopted  for  the  COST  531  database  because  of  their  compatibility  with  data 

selected for the Au‐In system [03Liu2] and in particular with data for the

AUIN_ALPHA phase which is isomorphous with the Au10Sn phase. The data 

for the Au‐Sn system were adjusted to be consistent with adopted unary data 

for Sn in the HCP_A3 and FCC_A1 phases.  

References: 

[03Liu1]  Liu, H. S., Liu, C. L., Ishida, K., Jin, Z, P.: J. Electron. Mater., 2003, 32

    1290‐1296. 

[03Liu2]  Liu, H. S., Cui, Y., Ishida, K., Jin, Z. P.: CALPHAD, 2003, 27, 27‐37. 

 

Au-Zn

The Au‐Zn phase diagram is exceedingly complex and is characterised  by 

a cascade  of  peritectic  reactions on the zinc side of the diagram.  There  are 

13 intermetallic  phases  (11  of  which  have  been  modelled)  including 

an ordered bcc phase (AUZN_BETA) and a γ‐brass phase (AUZN_BRASS). There 

are reports that the ordered bcc phase undergoes a low temperature transition 

[MAS] but this is not modelled here. The α’2 phase given in [MAS] has also been 

ignored  in  the  present  work.  The dataset chosen for this work comes from 

[03Liu] with modifications being made to the data for the AUZN_G3 phase to

make it compatible with other hcp phases in the database, and to the data the data for the AUZN_BETA phase in order to remove a very narrow unrealistic miscibility gap that appears during calculation.  Owing to the 

complexity of the phase diagram, two of the intermetallics have not been 

labelled.  These are AU4ZN5 at x(Zn)=0.56  and  AUZN6 at x(Zn)=0.85.  

The crystallography of many of the intermetallic phases in this system still 

remains a mystery and hence it has been convenient to model many of them

 as stoichiometric compounds. 

Owing to pure Zn having a different c/a ratio from other elements with the hcp

structure, it is modelled as a different phase and is labelled HCP_ZN. 

 

References: 

[03Liu]  Liu, H. S., Ishida, K., Jin, Z. P., Du, Y.: Intermetallics, 2003, 11, 987‐994. 

 

Bi-Cu      

The Bi‐Cu system is a simple eutectic system showing virtually no mutual solubility

of the component elements. The thermodynamic description is taken from [89Tep].

References:  

[89Tep]  Teppo, O., Niemela, J., Taskinen, P.: Report TKK‐V‐B50, 1989, Helsinki 

    University of Technology. 

Bi-In                

The data from Boa and Ansara [94Boa] were accepted for most of the phases 

in the system. A reassessment of the ε‐BiIn phase was necessary, as this phase 

is  isomorphic  from  the  crystallographic  point  of  view  with  the  In‐Pb  phase, 

named  TET‐ALPHA1  in  the  database.  New  parameters  were  also  derived 

within the scope of COST 531 Action since different unary data for  the  pure 

elements  in  this  phase  were  used  by  [94Boa]  from those selected from the 

COST 531 database. Very good agreement was reached, both in the terms of the temperatures of the invariant reaction and range of homogeneity  of the

TET_ALPHA1 phase, using the old and new descriptions. 

References: 

[94Boa]  Boa, D., Ansara. I.: Thermochim.  Acta, 1998, 314, 79‐86. 

Bi-Ni                

Data for the Bi‐Ni system were assessed by Vassilev et al. [07Vas] within the 

scope of the COST 531 Action. This assessment incorporated new experimental 

data for the activity of Bi in the liquid phase and so required a re‐evaluation 

of an earlier assessment [05Vas].  

References: 

[05Vas]  Vassilev, G. P., Liu, X. J., Ishida, K.: J. Phase Equilib. Diffus., 2005, 26

    161‐168.  

[07Vas]  Vassilev, G.  P., Romanowska, J., Wnuk, G.: Int.  J.  Mat.  Res., 2007, 98

   468‐475. 

Bi-Pb                

The Bi‐Pb system exhibits both a eutectic reaction and the peritectic formation 

Of an intermetallic HCP phase. A considerable amount of Bi may dissolve in 

crystalline  Pb  but  there  is  negligible  solubility  for  Pb  in  crystalline  Bi. 

The thermodynamic description for this system is taken from [98Boa] quoting 

private communication with H.L. Lukas. 

References: 

[98Boa]  Boa D., Ansara, I.: Thermochim. Acta, 1998, 314, 79‐86. 

 

 Bi-Pd                

Several versions of the Bi‐Pd phase diagram are available in the literature, the 

main  difference  between  them  being  associated  with  the  Pd‐rich  equilibria. 

Little work has been carried out on this part of the system and so it is relatively 

unknown. Also, no thermodynamic assessment of this system had been carried 

out prior to COST 531, which made the Bi‐Pd system subject to extensive study 

during the Action. According to [MAS], there are 6 intermetallic phases in the 

system, 3 of which have high and low‐temperature modifications. The Bi‐rich 

α,β‐Bi2Pd phase (BI2PD) has a narrow homogeneity range, and it is unclear whether 

it forms congruently or peritectically from the liquid. The remaining phases 

are present as line compounds apart from the γ‐phase (BI3PD5) which exists

as a ‘triangular’ phase field over approximately 6 at% but only from about 

400 – 683 °C,  although the lower temperature limit for this  phase is uncertain. 

 

As part of the study undertaken under COST 531, enthalpies of mixing of liquid 

alloys were determined by high‐temperature solution calorimetry for 

compositions from 0 – 50 at% Pd at 1028K, and enthalpies of formation of the 

BI2PD and BIPD intermetallic phases were determined by ab initio methods. 

Selected DTA and SEM studies were carried out on alloys in the Pd‐rich region 

of the diagram in order to ascertain the phase relationships in the unknown part 

of the system. The experimental data were used in conjunction with phase 

diagram information taken from the literature to perform a thermodynamic

assessment of the system. Some simplifications were made in that the distinction 

between high and low‐temperature modifications of the phases was ignored, 

as were the Bi2Pd5 and Bi12Pd31  phases owing to uncertainties in their stability. 

Reference to these two phases is found only in the work of [79Sar]. However, these phases were not found in the present experimental study, and 

hence they were not included in the optimisation. The experimental details, 

results and the modelling are presented in [06Vre].  

The calculated phase diagram shows the ‘degenerate’ nature of the melting of BI2PD.

As a result of the experimental study, the melting of BIPD3 is now as congruent rather

than incongruent as presented in [MAS]. The y-phase (BI3PD5) has now a much larger

temperature stability range.  

References: 

[79Sar] Sarah, N., Schubert, K.: J. Less­Common Met., 1979, 63, P75‐P82. 

[06Vre]  Vřešťál,  J.,  Pinkas,  J.,  Watson,  A.,  Scott,  A.,  Houserová,  J.,  Kroupa,  A.: 

   CALPHAD, 2006, 30, 14‐17. 

 

 Bi-Sb                

DATA for this system were assessed by Ohtani and Ishida [94Oht]. The data were  

checked for consistency in the scope of the COST 531 Action  and  no discrepancies

were found. This system exhibits the wide mushy zone between the LIQUID and 

RHOMBO_A7 phase and also a RHOMBO_A7 miscibility gap at lower temperatures. 

References: 

[94Oht]  Ohtani, H., Ishida, K.: J. Electron. Mater., 1994, 23, 747‐755.

 

Bi-Sn                

The existing assessed data for the system by Ohtani et al. [94Oht] and 

Lee et al. [96Lee] were modified to reduce the solubility of Bi in BCT_A5 (Sn). 

The previously assessed very high solubility of Bi in BCT_A5 (Sn)  (approx. 

10 at% of Bi) was based on old data of Nagasaki and Fujita [52Nag].  Since 

then, newer experimental results [07Viz, 07Bra] indicate a significantly lower 

solubility of Bi in BCT_A5 (Sn). The relevant change in the phase  diagram 

required a change of both LIQUID and BCT_A5 data. The new reassessment 

was carried out in the scope of the COST 531 Action and published in [07Viz]

References: 

[52Nag]  Nagasaki, S., Fujita, E.: J. Jpn. Inst. Met., 1952, 16, 317. 

[58Oel]  Oelsen, W., Golücke, K. F.: Arch. Eisenhüttenw., 1958, 29, 689. 

[94Oht]  Ohtani, H., Ishida, K.: J. Electron. Mater., 1994, 23, 747. 

[96Lee]   Lee, B. J., Oh, C. S., Shim, J. H.: J. Electron. Mater., 1996, 25, 983. 

[07Bra]   Braga,  M. H.,  Vízdal,  J.,  Kroupa,  A.,  Ferreira,  J.,  Soares,  D.,  Malheiros, 

    L. F.: CALPHAD, 2007, 31, 468‐478. 

[07Viz]  Vízdal, J., Braga, M. H., Kroupa, A., Richter, K. W., Soares, D., Malheiros, 

    L. F., Ferreira, J.: CALPHAD, 2007, 31, 438‐448. 

 

 

Bi-Zn                

Several authors have assessed the Bi‐Zn system –  e.g.  Malakhov  [00Mal]

Oleari et al. [55Ole], Bale et al. [77Bal], Girard [85Gir] and Wang et al. [93Wan].  Kim and Sanders [03Kim] attempted to describe proberly the segregation region in the 

liquid, using two L interaction parameters only instead of six used by Malakhov.

Unfortunately, their des descriptions are not mutually consistent. The data from

Malakhov [00Mal] were used for this system, based on the conformity were with  experimental  data.

Some unary parameters are not consistent with the [SGTE4] database and therefor

changes were introduced and new value of unary data for Bi in HCP_ZN phase from

work of Moelans [03Moe] was accepted. The phase diagram was reassessed by Vízdal et al. [07Viz].

References: 

[55Ole]  Oleari,  L.,  Fiorani,  M.,  Valenti,  V.:  La  Metallurgia  Italiana,  1955,  46

    773. 

[77Bal]  Bale, C. W., Pelton, A. D., Rigaud, M.: Z. Metallkd., 1977, 68, 69‐74. 

[85Gir]  Girard, C.: “Fonctions d’exces et diagrammes d’equilibre des phase de 

   quatre  systemes  metalliques  ternaires“,  Ph.D.  Thesis,  Universite  de 

   Provence, Marseille, 1985. 

[93Wan] Wang, Z. C., Yu, S. K., Sommer, F.: J. Chimie Phys. Physico­Chimie Biol., 

    1993, 90, 379‐385. 

[00Mal]  Malakhov, D. V.: CALPHAD, 2000, 24, 1‐14. 

[03Kim]  Kim, S. S., Sanders, T. H. Jr.: Z. Metallkd., 2003, 94, 390‐395. 

[03Moe] Moelans, N., Kumar, K. C. H., Wollants, P.: J. Alloy.  Compd., 2003, 360

    98‐106. 

[07Viz]  Vízdal, J., Braga, M. H., Kroupa, A., Richter, K. W., Soares, D., Malheiros, 

    L. F., Ferreira, J.: CALPHAD, 2007, 31, 438‐448. 

 

Cu-In                

The  Cu‐In  system  as  presented  in  [MAS]  is  quite  complex  containing 

9 intermetallic phases, all of which appear at In contents of less than 50 at%. 

The most complex of these is the ‘η’ phase, which is shown as a cascade, or 

bundle of polymorphs. More recent experimental work undertaken by [93Bol]

reduced this collection of phases to just two, which were labelled as η (CUIN_ETAP), the low temperature variant, and η ’(CUIN_ETA) being stable 

over a higher temperature range. The thermodynamic description of this 

system was taken from the ternary assessment of the Cu‐In‐Sn system

presented by [01Liu] (although the Cu‐In binary assessment was published 

later in [02Liu]. For some reason, the order of the two phase names were 

switched in [01Liu] with respect to [02Liu]; the high temperature phase in the 

former work being labelled η , whereas in the latter work (and also in [93Bol]

it was labelled η’. In the modelling, the higher temperature variant is described 

by a 3 sublattice model giving the phase a homogeneity range, unlike the lower 

temperature phase which is treated as a line compound. For the purposes 

of simplification, the η‐phase (CUIN_DELTA) is also treated as a line compound 

here, despite it having a measured homogeneity range of about 1.5 at% [MAS]

References: 

[93Bol]  Bolcavage, A., Chen, S.W., Kao, C.R., Chang, Y.A.: J. Phase Equilib., 1993, 

    14, 14‐21.  

[01Liu]  Liu, X.J., Liu, H.S., Ohnuma,  I.,  Kainuma,  R.,  Ishida,  K.,  Itabashi,  S., 

Kameda, K., Yamaguchi, K.: J. Electron. Mater., 2001, 30, 1093‐1103. 

[02Liu]  Liu, H.S., Liu, X.J., Cui, Y., Wang, C.P., Ohnuma, I., Kainuma, R., Jin, J.P., 

   Ishida, K.: J. Phase Equilib., 2002, 23, 409‐415. 

 Cu-Ni                

The data for this system from the assessment of an Mey, published in the

COST507 database [92Mey], were accepted for the COST 531 database.  The

theoretical dataset was tested for the consistency and no disagreement was

found. A miscibility gap exists in the FCC_A1 phase in this system.

References: 

[92Mey]  an Mey, S.: CALPHAD, 1992, 16(3), 255‐260. 

Cu-Pb                

The most prominent feature of the Cu‐Pb phase diagram is the monotectic reaction 

leading to phase separation in the liquid phase. There is negligible mutual solid

solubility between Cu and Pb. The dataset used here is taken from [86Hay].

As Cu and Pb have the same crystal structure, they have been treated with

a single Gibbs energy expression. 

References: 

[86Hay]  Hayes, F.H., Lukas, H.‐L., Effenberg, G., Petzow, G.: Z. Metallkde., 1986, 

    77, 749‐754. 

 Cu-Pd                

The Cu‐Pd system is a simple isomorphous system showing complete solid solubility for all compositions across the phase diagram. The thermodynamic 

parameters for this system were taken from [91Sub], with minor modifications 

being  made  to  improve  the  agreement  between  the  calculated and 

experimentally determined phase boundaries. 

References: 

[91Sub]  Subramanian, P.R., Laughlin, D.E.: J. Phase Equilib.: 1991, 12, 231‐243. 

 

 Cu-Sb                

The data for the Cu‐Sb system are from the assessment of Liu et al. [00Liu]

This  assessment  represents  a  significant  change  from  earlier  assessments 

[91Nit] and [91Tep] in that the β phase has been treated as a disordered bcc 

phase (BCC_A2). Further modification to the data will probably be necessary to 

remodel  the  γ  phase  (CUSB_GAMMA  in  [00Liu])  using  the  model  for  the 

HCP_A3 phase, which corresponds to the real crystallographic structure over a 

range of homogeneity. 

References: 

[91Nit]    Nitsche, R., an Mey, S., Hack, K., Spencer, P. J.: Z. Metallkde., 1991, 82

   67‐72. 

[91Tep]  Teppo, O., Taskinen, P.: Scand. J. Metall., 1991, 20, 174‐182. 

[00Liu]  Liu, X. J.,  Wang, C. P.,  Ohnuma, I.,  Kainuma,  R.,  Ishida,  K.:  J.  Phase 

   Equilib., 2000, 21, 432‐442. 

 Cu-Sn                

The data for the Cu‐Sn system from the assessment of Liu et al. [01Liu] were 

accepted for the database. This assessment is an extension of earlier work 

of Shim  et  al.  [96Shi].  Also, the binary FCC_A1 solution data were modified

by Lee  [04Lee] to be consistent with the new data for FCC_A1 (Sn) adopted 

in the SGTE unary database v4.4 [SGTE4].  

Several further modifications were necessary to assure consistency with other 

systems  in the COST 531 database.  According to Liu et.  al.  [01Liu],  there is

a complex  ordering  reaction  around  700 °C  and  0.2  Sn,  which  is  not  yet 

completely understood, described as BCC_A2 → B2 → D03  or BCC_A2→ D03.  

Because of remaining uncertainties about the real nature of the reactions, and 

to  be  able  to  model  the  ternary  Cu‐Ni‐Sn  system  where  there  is  mutual 

solubility between this bcc/γ (BCC_A2/D03 ) phase and Ni3Sn phase originating 

in the Ni‐Sn system, the high‐temperature Cu‐rich phase was modelled  as simple 

 disordered BCC_A2 phase. Also the high temperature modification of the Cu6Sn5 phase

had to be remodelled as CuIn‐η phase because of complete solubility between these two phases found experimentally in the Cu‐In‐Sn system. 

The liquid phase data have also been modified within the scope of COST 531 

Action to take into account the latest enthalpy of mixing data from Vienna [08Fla].

 

References: 

[96Shi]  Shim, J. H., Oh, C. S., Lee, B. J., Lee, D. N.: Z. Metallkde, 1996, 87, 205‐212.

[01Liu]  Liu,  X.  J.,  Liu,  H.  S.,  Ohnuma,  I.,  Kainuma,  R.,  Ishida,  K.,  Itabashi,  S., 

 Kameda, K., Yamaguchi, K.: J. Electron. Mater., 2001, 30, 1093‐1103. 

[04Lee] Lee, B. J.: Unpublished work, 2004. 

[08Fla]  Flandorfer, H., Luef, Ch., Saeed ,U.: J. Non­Cryst. Solids, 2008, in print. 

 

Cu-Zn                 

The critically assessed data for this system are from the assessment of Kowalski and Spencer

 [93Kow] which reproduces well all the experimental data for the system. The dataset includes data for both the ordered B2_BCC  phase and the associated disordered BCC_A2 phase.

The δ(CuZn3) phase was modelled as BCC_A2 in agreement with the result of [49Sch].

The ordering temperature BCC_A2--> B2_BCC is concentration dependent and lies between

 454 - 467°C.  

References: 

[49Sch] Schubert, K., Wall, E.:Z. Metallkde.,1949, 40, 383‐385.

[93Kow] Kowalski, M., Spencer, P. J.: J. Phase Equilib., 1993, 14, 432‐438.

 

In-Ni                

This system contains a number of intermetallic phases, 5 of which are treated 

as stoichiometric in the modelling of the system. On the other hand, the 

δ (INNI_DELTA) and ζ(INNI_CHI) phases show reasonable homogeneity ranges; 

 ~7 and 10 at%, respectively, although both of these phases are stable over 

only a limited temperature range. The source of the thermodynamic 

parameters  for this  system is  [02Wal].  In the original work, the modelling 

included a description for the gas phase. However, thegas phase is not 

included in the COST 531 thermodynamic database and hence data for the 

In‐Ni gas was removed from the dataset. This resulted in the reappearance of 

some  of  the  compound  phases  at  temperatures  much  higher than their true 

stability ranges. In the course of the compilation of the COST 531 database,

modifications to the  thermodynamic  parameters for these compounds were 

made in order to ensure that the phases did not appear at higher temperatures 

below 3500K, the upper temperature limit of the COST 531 database. 

References: 

[02Wal]  Waldner, P., Ipser, H.: Z. Metallkde., 2002, 93, 825‐832. 

 

In-Pb

The data for the In-Pb system are from an unpublished assessment of

Bolcavage  [95Bol] reported by Boa  and Ansara  [98Boa]

The data for the tetragonal phase were remodelled within the framework of

COST 531 using revised unary data for In consistent with data used for the

In‐Sn system. 

References: 

[95Bol]  Bolcavage, A.,  Kao, C. R.,  Chen, S. L.,  Chang, Y. A.:  Proc.  Conf. 

  “Applications of Thermodynamics in the Synthesis and Processing of 

   Materials”, P. Nash and B. Sundman (eds.), The Minerals, Metals and 

   Materials Society, 1995. 

[98Boa]  Boa, D., Ansara, I.: Thermochim.  Acta, 1998, 314, 79‐86. 

 

In-Pd                

The data from the assessment of Jiang and Liu [02Jia] were accepted for the 

COST 531 database. This system is very complex, exhibiting many intermetallic 

phases with high and low temperature variations. As there are insufficient

experimental data, all the intermetallic phases are modelled as stoichiometric,

except for InPd phase, which has an ordered BCC_B2 structure.

As there is no ordering reaction in this system, the ordered phase was 

modelled using  a  two‐sublattice  model with the sublattice  ratio  0.5:0.5.  The 

data are not related to those for the disordered bcc phase. The crystallographic 

structure for many of the intermetallic phases is uncertain. 

References: 

[02Jia]   Jiang, Ch., Liu, Z. K.: Metall. Mater. Trans., 2002, 33A, 3597‐3603. 

 

In-Sb                

The original data for the In‐Sb system from Anderson were reported by Ansara 

et al. [94Ans] and referred to as a private communication. Small modification 

to data for the original α‐InSb phase was made. The phase was remodelled and 

renamed ZINCBLENDE_B3  to provide compatibility with the general model for the

the crystallographic structure of this phase. 

References: 

[94Ans]  Ansara, I., Chatillon, C., Lukas, H. L., Nishizawa, T., Ohtani, H., Ishida, 

   K.,  Hillert,  M.,  Sundman,  B.,  Argent,  B.  B.,  Watson,  A.,  Chart,  T.  G., 

   Anderson, T.: CALPHAD, 1994, 18, 177‐222. 

 

In-Sn                

This system has been modelled by several authors e. g. [96Lee, 99Ans,03Mo3]. 

The complete assessment of this system of Lee et al. [96Lee] was later amended 

by [03Moe] who reassessed the InSn‐β phase (TET_ALPHA1). 

Neither [96Lee] nor [03Moe] used unary data consistent with COST 531

Database in their assessments and therefore the data from Ansara et al. [99Ans]

were used as their dataset is consistent concerning the unary data. Small formal changes were made in the scope of the COST 531 Action. The name

 of the InSn‐β phase was changed to TET_ALPHA1 and remodelled to maintain  consistency with ternary systems since a phase with the same crystallographic 

structure exists in the In‐Pb and Bi‐In systems.  

There is significant discrepancy in the experimental data in the literature 

concerning the composition ranges of the (INSN_GAMMA +  BCT_A5)  and

(TETRAG_A6  +  TET_ALPHA1) two phase fields. The agreement of the assessment from [99Ans] with currently accepted experimental phase diagram

from [MAS] is very good.  

 

References: 

[96Lee]  Lee, B.‐J., Oh, C.‐S., Shim, J.‐H.: J. Electron. Mater.: 1996, 25, 983‐991. 

[99Ans]  Ansara, I., Fries, S. G, Lukas, H. L: Unpublished work, 1999. 

[03Moe]  Moelans, N., Kumar, K. C. H., Wollants, P.: J. Alloys Compd., 2003, 360, 98-106.

 

In-Zn                

The data from the critical assessment of Lee [96Lee] were used in the 

COST 531 database. There is significant disagreement in the eutectic

concentration (in the range of 3.1‐8 wt.% of Zn) between various authors 

e.g. [44Rhi, 56Oel, 50Car]. The theoretical assessment is in very good agreement with the experimental data accepted by [MAS]

 

References: 

[44Rhi]  Rhines, F.N., Grobe, A.H.: Trans. Met. Soc. AIME, 1944, 156, 156. 

[50Car]  Carapela Jr., S.C., Piretti, E.A.: Trans. Met. Soc. AIME, 1950, 188, 890. 

[56Oel]  Oelsen,W., Zühlke, P.: Arch. Eisenhüttenwes.,1956, 27, 743‐752. 

[96Lee]  Lee, B. J.: CALPHAD, 1996, 20, 471‐480. 

 

 Ni-Pb                

The main feature of the phase diagram of this system is a monotectic reaction 

occurring at 1340 °C leading to a miscibility gap in the liquid phase. With little 

mutual solid solubility between the elements, a wide FCC_A1+FCC_A1 region is 

also present  at  lower  temperatures.  The eutectic point is very close to the 

melting  point  of  Pb,  and  so  the  compositions  of  the  phases  involved  are 

virtually  pure  Ni  and  pure  Pb.  The source of the thermodynamic model 

parameters for this system is [00Wan]

References: 

[00Wan] Wang, C.P., Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K.: CALPHAD, 

    2000, 24, 149‐167. 

Ni-Pd                

The Ni‐Pd system has a simple isomorphous phase diagram, there being complete solid solubility at all compositions. The liquidus and solidus exhibit a 

minimum at about 1238 °C and x =0.4. The thermodynamic description for Pd

this system is taken from [99Gho], although calculation using these data results

in the presence of a miscibility gap in the solid phase at low temperatures;

a feature that is absent in the original publication. There would seem to be no

experimental justification for this at this time and it would therefore warrant

further study. 

References: 

[99Gho]  Ghosh, G., Kantner, C., Olson, G.B.: J. Phase Equilib., 1999, 20, 295‐308. 

 

Ni-Sn                

In order to maintain consistency between the thermodynamic data for the different binary systems, the adopted data for the Ni-Sn system [04Liu] required modification.

This was carried out within the scope of the COST 531 Action. The high temperature

Ni3Sn phase having the D03 structure has been observed in the Ni‐Sn system.

In the ternary Cu‐Ni‐Sn system, a continuous solubility region is observed between

the high‐temperature BCC_A2  phase originating in the Cu‐Sn binary and this Ni3Sn phase. Therefore, it was necessary to unify the models used for both phases

 in order to be able to model that region as a single phase. It was decided to reassess 

the Ni3Sn phase as having the BCC_A2 structure to be consistent with the simplified model  

selected for the relevant phase in the Cu‐Sn system.  

It was also necessary to remodel the Ni3Sn (NI3SN2) phase to make it compatible

 with the Au‐Ni‐Sn assessment already present in the COST  531 database. 

A new 3‐sublattice model, (Ni,Sn)0.5(Ni)0.25(Ni)0.25, taking into the account the

 homogeneity range of NI3SN2, has been employed. 

 

References: 

[04Liu] Liu, H. S., Wang, J., Jin, Z. P.: CALPHAD, 2004, 28, 363‐370.

 

Ni-Zn                

The data for the Ni‐Zn system are taken from the assessment of Miettinen [03Mie] which 

 is itself a modified version of the critically assessed data of Vassilev et  al. [00Vas]. The major

 difference between the two datasets relates to the modelling of the high temperature

 β phase which has  a chemically ordered CsCl BCC_B2 structure. The assessment adopted

for the  database modelled this phase as a disordered BCC_A2 structure. The original

assessment of Vassilev used a compound energy model with vacancies  introduced onto

the second sublattice.

 References: 

[00Vas] Vassilev, G. P., Gomez‐Acebo, T., Tedenac, J.‐C.: J. Phase Equilib., 2000,  21, 287‐301.

[03Mie] Miettinen, J.: CALPHAD, 2003, 27, 263-274.

 

 Pb-Pd                

Despite Pb and Pd having the same crystal structure, their mutual solubility is limited. Pd will

dissolve up to about 20 at% Pb, whereas the solubility of Pd in Pb is negligible. 

The thermodynamic description for this system is taken from [99Gho]

There are a number of  intermetallic phases in the system, some of which have a number

of polymorphs. According to [MAS], both the Pb9Pd13  and the Pb3Pd5 phases exist in α, β 

and γ forms. In the modelling, however, the  description of Pb9Pd13 is simplified, the phase 

being  treated as a single stoichiometric phase PD13PB9. 

The PD5PB3_BETA phase at approx.  x(Pd)=0.66 has not been labelled in figure for clarity.

References:

 [99Gho] Ghosh, G.: J. Phase Equilib., 1999, 20, 309‐315.

 

Pb-Sb                

The Pb‐Sb is a simple eutectic system. There is only limited mutual solid solubility of  

the component elements. The thermodynamic description for this systems is taken 

from [95Oht]

References: 

[95Oht]  Ohtani, H., Okuda, K., Ishida, K.: J. Phase Equilib., 1995, 16, 416‐429. 

Pb-Sn                

Data for the Pb‐Sn system are from the assessment of Ohtani and Ishida [95Oht].

The data for the FCC_A1 and LIQUID phases were modified within the framework of  

COST 531 to take account of new unary data for Sn in the metastable FCC_A1  

structure [SGTE4] 

References: 

[95Oht]  Ohtani, H., Ishida, K.: J. Phase Equilib., 1995, 16, 416‐429. 

 

 Pb-Zn                

The Pb‐Zn system shows negligible mutual solid solubility of the component elements

and no intermetallic phases. It is dominated by a syntectic reaction resulting from 

a large miscibility gap in the liquid phase. A eutectic reaction is present at a slightly 

lower temperature. The thermodynamic description for this system comes from [93Sri]

References: 

 

[93Sri] Srivastava, M., Sharma, R.C.: J. Phase Equilib., 1993, 14, 700‐709. 

 

Pd-Sn

The original assessment for the Pd‐Sn system was made by Ghosh [99Gho] using 

different unary parameters from those used in the scope of the COST 531 Action 

[SGTE4]. The main difference was found in the description of the Gibbs energy 

of pure Sn in the metastable FCC_A1 phase. Therefore, the dataset has been 

modified to take account of the revised value. The phase boundary shift, 

resulting from using new unary data, was corrected. The rest of the diagram 

was accepted without change.  

The phase diagram is very complicated, containing many intermetallic phases 

with high and low‐temperature modifications. Because of the lack of 

experimental data most of them were modelled as stoichiometric compounds. 

The detail of the phase diagram with very complex phase coexistence in the 

region around 0.4 Pd is shown in the figures.  

References: 

[99Gho]  Ghosh, G.: Metall. Mat. Trans. A, 1999, 30A, 5‐18.

 

Pd-Zn

This system was assessed by [06Viz] within the scope of the COST 531 Action. 

They used the thermodynamic data from the work of Kou et al. [75Kou] and 

Chiang  et  al.  [77Chi]. As there is a lack of experimental phase data for this 

system the authors utilised their own experimental results [06Viz] as well as 

the phase data estimated from [MAS] and [58Han]. The experimental results 

from  [06Viz] led to the confirmation of the η phase, identified by [51Now]

and not accepted by  [MAS],  as the stable phase. They also found a different 

invariant reaction in the Zn‐rich region in  comparison with [58Han] and 

[MAS]. A eutectic was identified instead of a peritectic reaction.

 

References: 

[51Now] Nowotny, H., Bauer, E., Stempfl, A.: Monatsh. Chem., 1951, 82, 1086‐

    1093. 

[58Han]  Hansen,  M.,  Anderko,  K.:  Constitution  of  Binary  Alloys,  McGraw‐Hill, 

   New York, 1958, 1130‐1133. 

[75Kou]  Kou, S., Chang, Y. A.: Acta Metall., 1975, 23, 1185‐1190. 

[77Chi]  Chiang, T., Ipser, H., Chang, Y. A.: Z. Metallkd., 1977, 68, 141‐147. 

[06Viz]  Vízdal, J., Kroupa, A., Popovic, J., Zemanová, A.: Adv. Eng. Mat., 2006, 8

   164‐176. 

 

Sb-Sn                

Existing literature assessments had to be reassessed as they used different unary 

data for pure Sb in the hypothetical BCT_A5 structure. The dataset from 

Oh et  al. [96Oh] was used as the base for the further work and DSC data of 

Vassilev et al. [01Vas], and also data newly obtained in the scope of the COST 

531 project [04Vas], were taken into account. The reassessment of the system 

was carried out by Kroupa and Vízdal [07Kro].  

References: 

[96Oh]  Oh,  C.  S.,  Shim,  J.H.,  Lee, B.J.,  Lee,  D. N.:  J.  Alloys  Compd.,  1996,  238, 155-166. 

[01Vas]  Vassiliev, V., Feutelais, Y., Sghaier, M., Legendre, B. : J. Alloy. Compd., 

   2001, 314, 198‐205. 

[04Vas]  Vassilev, G.P.: Unpublished work, 2004. 

[07Kro]  Kroupa, A., Vízdal, J.: Defect and Diffusion Forum, 2007, 263, 99‐104. 

 

 

Sb-Zn                

The data for the Sb‐Zn system are from the critical assessment of Liu et al. [00Liu].

The authors obtained good agreement between calculated and experimental 

values for a wide range of properties. 

References: 

[00Liu]  Liu,  X.  J.,  Wang,  C.  P.,  Ohnuma,  I.,  Kainuma,  R.,  Ishida,  K.:  J.  Phase 

   Equilib., 2000, 21, 432‐442. 

 

 

Sn-Zn                

The  Sn‐Zn  system  was  assessed  by  several  authors  [96Lee,  99Oht,  02Fri], 

which differ in the unary data used and also in the temperature dependence of 

the solubility of Zn in pure Sn. It was difficult to evaluate the reliability of particular

assessments as there is a limited number of experimental data in this region.

Therefore the consistency of the unary data was taken as an important criterion

and the theoretical data for the Sn‐Zn system from the critical assessment of 

Fries [02Fri] published as part of the COST507 database [98Ans] were accepted.

 

References: 

[96Lee]  Lee, B.‐J.: CALPHAD, 1996, 20, 471‐480. 

[98Ans]  Ansara, I., Dinsdale, A. T., Rand, M. H.: Thermochemical database for 

    light metal alloys, EUR18499, July 1998, 2, 288‐289.  

[99Oht]  Ohtani, H., Miyashita, M., Ishida, K.:  J.  Jpn.  Inst.  Met., 1999, 63, 685‐694.

 [02Fri]  Fries, S. G.: Unpublished work, 2002.  

 

Ternary systems

 

Ag-Au-Bi

The data for the Ag‐Au‐Bi system were taken from a recent assessment by Zoro 

et al. [07Zor1][07Zor2] undertaken within the framework of the COST 531 

Action.  The  assessment  is  based  on  their  own  experimental  study of four

 isopleths by X‐ray  diffraction,  differential  calorimetry  and  electron  probe 

microanalysis [05Zor1] and measurements of the enthalpies of mixing in the 

liquid phase [05Zor2]

References: 

[05Zor1] Zoro, E., Dichi, E., Servant, C., Legendre, B.: J. Alloys Comp., 2005, 400, 209-215. 

 [05Zor2] Zoro, E., Boa, D., Servant, C., Legendre, B.: J. Alloys Comp., 2005, 398, 106-112. 

 [07Zor1] Zoro,  E.,  Servant,  C.,  Legendre,  B.:  J.  Thermal  Anal.  Calor.,  2007,  90, 347-353. 

 [07Zor2] Zoro, E., Servant, C., Legendre, B.: CALPHAD 2007, 31, 89‐94. 

 

Ag-Au-Sb

The data for the Ag‐Au‐Sb system were taken from a recent asssessment by Zoro et al. 

[07Zor1] [07Zor2] undertaken within the framework of the COST 531 Action. 

The assessment is based on their own experimental study of phase equilibria across 

seven isopleths and measurements of the enthalpies of mixing in the liquid phase. 

References: 

[07Zor1] Zoro,  E.,  Servant,  C.,  Legendre,  B.: J.  Phase  Equilib.  Diffus.,  2007,  28, 250-257. 

 [07Zor2] Zoro,  E.,  Servant,  C.,  Legendre,  B.:  J.  Thermal  Anal.  Calor.,  2007,  90, 347-353.

 

Ag-Bi-Sn

The data for this system were a revision of an assessment of Garzel et al. [06Gar] based

on the new experimental electromotive force (emf) data [06Gar, 07Li] obtained in the scope of COST 531 Action. The revision was necessary because of the change to the

data for the Ag‐Sn and Bi‐Sn systems and is in very good agreement with all  available data. These replaced the previous assessment of Ohtani et al. [04Oht]

References: 

[04Oht]  Ohtani, H.: Materials Transactions, 2004, 42, 722‐731. 

[06Gar]  Garzel, G., Zabdyr, L. A.: J. Phase Equil., 2006, 24, 140‐144. 

[07Li]  Li, Z., Knott, S., Mikula, A.: J. Electron. Mat., 2007, 36, 40‐44. 

 

Ag-Cu-In

This system had not been assessed prior to COST 531.  The only experimental 

information on this system was presented by [88Woy] which gave an 

isothermal section for 505 °C. An interesting feature of this section is what 

would seem at first sight to be a ternary compound lying along at approximately 

30  at%  In.  At closer inspection, this ‘ternary’ compound is in fact the  

CUIN_GAMMA phase which exists as a complete series of solid solutions from

CUIN_GAMMA, which is a high‐temperature phase in the Cu‐In binary system, 

to Ag2In, which is a low temperature phase in the Ag‐In binary system.

Because of the differing temperature stabilities of the binary variants of the 

phase, it is not seen as a complete series of solid solutions at any one 

temperature.  

As part of the experimental work of COST 531, a programme of study was initiated

by the IMMS‐PAS at Krakow, Poland, to determine the thermodynamic properties

of the liquid phase (enthalpies of mixing (in conjunction  with  the University of  

Leeds, UK) and the activity of In in the liquid [08Wie]) and the liquidus surface

along three sections of the ternary system [06Wie].  

The modelling of this system is quite challenging. The enthalpies of mixing in the

Ag-Cu system are positive whereas those for the Ag-In system are negative, and  

extrapolation of the binary systems into the ternary predicts a miscibility gap in

 the liquid phase that is not seen experimentally. 

The experimental  data  generated  as  part  of  COST  531  have  been  used  in 

an attempt to model the ternary system. As a first step in this modelling it was 

necessary to remodel the Ag2In phase to make it compatible with the 

CUIN_GAMMA phase in the Cu‐In system (see binary systems section, Ag‐In). 

The diagrams below represent the current state of the modelling of this system

but it should be stressed that it is still under refinement. Although the

experimental thermodynamic properties are reproduced reasonably well there is 

still disagreement between the experimental and calculated liquidus surface.

These features are more likely an artefact of the calculations and it is envisaged that in the 

final version of the model, the phase separation will not be present resulting in the 

loss of one of the invariant reactions. There are a number of invariant 

reactions occuring in the In‐corner of the diagram, which are seen more clearly 

in a magnified portion of the liquidus.

It can be seen how the CUIN_GAMMA phase lies across the section but without

 being stable in either of the Cu‐In and Ag‐In binaries at this temperature.

 

Even  though  the  modelling  still  requires  work, the fit between the calculated

and experimental data is good. 

References: 

[88Woy]  Woychik, C.G., Massalski, T.B.: Met. Trans., 1988, 19A, 13‐21. 

[06Wie]   Wierzbicka,  A.,  Czeppe,  T,  Zabdyr,  L.A.:  Arch.  Met.  Mater.,  2006,  51

     377‐387. 

[08Wie]   Wierzbicka,  A.,  Watson, A.,  Zabdyr,  L.A.:  to  be  submitted  to  J.  Alloys 

    Compd, 2008. 

 

Ag-Cu-Ni

Measurements on the Ag‐Cu‐Ni system were first reported by de Cesaries [13deC] who

provided a plot of the liquidus surface and some solidus points.  The system was studied again

by Guertler and Bergmann [33Gue]. Siewert and  Heine [77Sie] studied phase equilibria at

800 °C and 900 °C and the liquidus surface while more recently Luo and Chen [96Luo] studied

phase equilibria  at 700 °C, 795 °C and 860 °C. Calculations were carried out within the 

framework of COST 531 to explore the agreement between the current  database and the

limited experimental data for this system. No ternary  interactions were found to be necessary.  Experimental data published prior to the COST Action have been added to  calculated 

isothermal sections to demonstrate validity of critically assessed  data.

References: 

[13deC]   de Cesaris, P.: Gazz. Chim. Ital., 1913, 25, 365‐79.

[33Gue]   Guertler, W., Bergmann, A.: Z. Metallkde., 1933, 25, 53‐57. 

[77Sie]     Siewert, T.A., Heien, R.W.: Metall. Trans. A, 1977, 8A. 515‐518. 

 

Ag-Cu-Pb

The data for this system was accepted from the well established assessment of [86Hay] which

 is in very good agreement with the experimental data. Only one invariant reaction very close

to the Pb‐rich corner in this system. Three FCC_A1 phases with very limited solubility of

other elements are the  result of the reaction. 

References: 

[86Hay]   Hayes, F., Lukas, H. L., Effenberg, G., Petzow, G.: Z. Metallkde., 1986, 77, 749-754.

 

Ag-Cu-Sn

The data for the Ag‐Cu‐Sn system were taken from an unpublished assessment of Gisby and

Dinsdale carried out prior the COST 531 Action. Recent measurments of the enthalpies of mixing and emf in the liquid phase by Flandorfer and Zabdyr respectively undertaken within

the COST 531 Action  have not been taken into account. The assessment was based on 

calorimetry data of Shen et al. [69She1, 69She2], studies of the solubility of Cu in Ag‐Sn

liquids by [99Cha] and studies of phase equilibria for various isopleths in the  ternary system

[59Geb, 81Fed, 82Fed, 94Mil, 00Loo, 00Moo]

This system has a great importance for the industry.

References: 

[59Geb]   Gebhardt, R. E. G., Petzow, G.: Z. Metallkde, 1959, 50, 597‐605. 

[69She1]  Shen, S. S.: Ph.D. Thesis, 1969, University of Denver. 

[69She2]  Shen, S. S., Spencer, P. J., Pool, M. J.: Trans. AIME, 1969, 245, 603‐606. 

[81Fed]    Fedorov, V. N., Osinchev, O. E., Yushkina, E. T.: Fazovye Ravnovesiya 

                 Met. Splavakh, 1981, 42‐49. 

[82Fed] Fedorov, V. N., Osinchev, O. E., Yushkina, E. T.: in Phase Diagrams of  Metallic 

               Systems, 1982,  Ed. Ageev, N. V., Petrova, L. A., 26, 149‐150. 

[94Mil]   Miller, C. M., Anderson, I. E., Smith, J. F.: J. Electron. Mat., 1994, 23,  595‐601. 

[99Cha]  Chada, S., Laub, W., Fournelle, R. A., Shangguan, D.: J. Electron. Mat.,  1999, 26, 

                1194‐1202. 

[00Loo] Loomans, M. E., Fine, M. E.: Metall. Mater. Trans. A, 2000, 31A, 11551162. 

[00Moo] Moon, K. W., Boettinger, W. J., Kattner, U. R., Biancaniello 

 

Ag-In-Sn

The critically assessed data of Liu et al. [02Liu] were adopted and when used with the COST 531binary data give very good agreement with experimental information. The liquidus surface is very complex close to the In‐Sn binary system and the side projection

of the liquidus lines is very useful to indicate  the position of particular invariant reactions. 

References: 

[02Liu]   Liu, X., Inohana, Y., Takaku, Y., Ohnuma, I., Kainuma, R., Ishida, K.,  Moser, 

                Z., Gasior, W., Pstrus, J.: J. Electron. Mater., 2002, 31, 1139-1151.

 

Ag-Ni-Sn

There are very few published experimental data for this system. More recently extensive

studies of the phase diagram have been undertaken by Schmetterer  [07Sch]. Ternary

interaction data for the liquid phase have been introduced  in the scope of COST 531 Action andthese give reasonable agreement with experimental properties measured by [07Sch].

The liquidus projection of this system is very complex owing to the properties of the binary

Ag-Ni system. It is unusual as it exhibits both liquid and solid phase immiscibility.

This leads to the presence of two monotectic reactions in the binary phase diagram, and

these have a great effect on the equilibria in  the ternary Ag‐Ni‐Sn system. The ternary phase

diagram is dominated by a large region of liquid immiscibility that extends from the binary 

Ag‐Ni system. Associated with this miscibility gap are two decomposition reactions.

References:

[07Sch]   Schmetterer, C.: "Interactions of Sn‐containing solders with Ni(P) substrates ‐ phase equilibria and thermodynamics", thesis, University of Vienna, 2007.

 

Au-Bi-Sb

Data from the critical assessment of [07Wan] were adopted after checking for consistency with the unary and binary data used in the scope of COST 531 Action. Good agreement was found in comparison with experimental data published in [07Wan].

References:

[07Wan] Wang, J., Meng, F. G., Liu, H. S., Liu, L. B., Jin, Z. P.: J. Electron Mater., 2007, 36, 568‐577.

 

Au-In-Sb

Data from the critical assessment of Liu et al. [03Liu] were adopted after modification in the scope of COST 531 Action. This system exhibits a very complex liquidus surface, which is shown in detail in the diagrams. In particular the T‐x projection gives an excellent overview of the invariant points.

References:

[03Liu]     Liu, H. S., Liu, C. L., Wang, C., Ishida, K.: J. Electron. Mater., 2003, 32, 81-88.

 

Au-In-Sn

This system had not been assessed prior to COST 531. Phase diagram data for the system are sparse. Therefore, a full experimental determination of the system was undertaken under the Action comprising a series of phase diagram studies to confirm previous observations of the phase relationships, DTA and DSC studies to fully characterise the melting behaviour of the ternary AU4IN3SN3 compound, determination of the enthalpy of formation of the ternary compound by direct and tin‐solution calorimetry and measurement of the enthalpies of mixing of liquid alloys. The experimental results were used in a CALPHAD assessment of the system, which will be published, along with the experimental data in a series of publications to be submitted to the CALPHAD journal [08Bor, 08Wat, 08Cac]

The ternary compound was found to melt incongruently, contradicting earlier work. The liquidus surface is deceptively complex, as can be realised from the T‐X(In) projection, partly owing to primary solidification surfaces for AU7IN3 and the ternary compound in the ternary system.  There are 11 transition reactions, two ternary peritectic reactions and 2 ternary eutectics.

References:

[08Bor]   Borzone, G., Cacciamani, G., Watson, A.: to be submitted to CALPHAD, 2008.

[08Wat]  Watson, A., Borzone, G., Cacciamani, G.: to be submitted to CALPHAD, 2008.

[08Cac]    Cacciamani, G., Watson, A., Borzone, G.: to be submitted to CALPHAD, 2008.

 

Au-Ni-Sn

Liu et. al. [05Liu] has published an assessment of the data for this system. Slight corrections were made to obtain agreement with the published data and to accommodate the adopted COST 531 binary data. 

The liquidus surface is quite complex with many invariant reactions. In addition to the primary solidificaton fields, there is also a very small DHCP primary liquidus surface at the Au‐Sn binary edge at a composition x(Sn) of about 0.21.

References:

[05Liu]    Liu, X.‐J., Kinaka, M., Takaku, Y., Ohnuma, I., Kainuma, R., Ishida, K.: J. Electr. Mater.; 2005, 34, 670‐679.

 

Bi-In-Sn

This ternary system was assessed by [99Yoo], but because of changes to the binary data (Bi‐In, Bi‐Sn, see binary systems) it was necessary to reassess the system in the scope of COST 531 Action. The liquidus surfaces in two different projections are shown here, together with selected isothermal sections (near the eutectic temperature) and a set of isopleths (with different ratios of Bi and In near the invariant points) were calculated. The agreement with the experimental data and the previous assessment is very good. Some discrepancies with [99Yoo] can be found at the lowest temperatures (below 50 °C), where no experimental data exist.

References:

[99Yoo]  Yoon, S. W., Rho, B.‐S., Lee, H. M., Kim, C.‐U., Lee, B.‐J.: Metall. Mater. Trans., 1999,

                30A, 1503‐1515.

 

Bi-Sb-Sn

Although Ohtani and Ishida [94Oht] optimized thermodynamic parameters in this ternary system, a critical evaluation of the literature data in the frame of the COST 531 program as well as new experimental thermodynamic results [01Vas, 05Kat] created a need for reassessment of data for the Bi‐Sb‐Sn system. The results of the modelling of phase equilibria are compared with experimental results from [07Man] and from other literature sources. Also, experimentally obtained activities and experimentally based excess Gibbs energy functions from the literature [01Vas, 05Kat] were used for the optimization of the thermodynamic parameters.

References:

[94Oht]    Ohtani, H., Ishida, K.: J. Electron. Mater., 1994, 23, 747‐755.

[01Vas]    Vassilev, V., Feutelais, Y., Sghaier, M., Legendre, B.: J. Alloys Comp., 2001, 314, 198‐205.

[05Kat]    Katayama, I., Živković, D., Manasijević, D., Tanaka, T.,. Živković, Ž., Yamashita, H.: Netsu Sokutei, 2005, 32, 40‐44. 

[07Man] Manasievič, D., Vřešťál, J., Minič, D., Kroupa, A., Živkovič, D., Živkovič,

                Ž.: J. Alloys Comp., 2007, 438, 150‐157. 

 

Bi-Sn-Zn

The ternary Bi‐Sn‐Zn system was assessed by Malakhov et al. [00Mal] and Moelans et al. [03Moe]. Both assessments are based on the experimental work of Muzaffar [23Muz] and both authors introduced ternary corrections for the liquid phase only. The assessments of this system are unfortunately not mutually consistent, as the authors used different unary data and also binary data for Bi‐Sn systems ([94Oht], [96Lee]). As both Malakhov et al. [00Mal] and Moelans et al. [03Moe] have used the older thermodynamic description of the Bi‐Sn system for their assessments, it was necessary to reassess the Bi‐Sn‐Zn system using the newly assessed Bi‐Sn system [07Viz]. Recently, Luef et al. [06Lue] published experimentally measured enthalpies of liquid and DSC data in Sn‐rich part of the system. Braga et al. [07Bra] published new significant experimental results focusing on the miscibility gap and also the Sn‐rich part of the phase diagram. These data were also utilized for the reassessment of the ternary system [07Viz].

References:

[23Muz] Muzaffar, S. D.: J. Chem. Soc., 1923, 123, 2341.

[94Oht]  Ohtani, H., Ishida, K.: J. Electron. Mater., 1994, 23, 747‐755.

[96Lee]  Lee, B.‐J., Oh, C.‐S., Shim, J.‐H.: J. Electron Mater., 1996, 25, 983‐991.

[00Mal] Malakhov, D. V., Liu, X. J., Ohnuma, I., Ishida, K.: J. Ph. Equil., 2000, 21, 514‐520.

[03Moe] Moelans, N., Kumar, K. C. H., Wollants, P.: J. All. Comp., 2003, 360, 98106.

[06Lue] Luef, C., Paul, A., Vízdal, J., Kroupa, A., Kodentsov, A. Ipser, H.: Monatsh. Chem., 2006,

              137, 381‐395.

[07Bra] Braga, M. H., Vízdal, J., Kroupa, A., Ferreira, J., Soares, D., Malheiros, L. F.: CALPHAD,

              2007, 31, 468‐478.

[07Viz] Vízdal, J., Braga, M. H., Kroupa, A., Richter, K. W., Soares, D., Malheiros, L. F., Ferreira, J.:

              CALPHAD, 2007, 31, 438‐448.

 

Cu-In-Sn

The data from Liu et al. [01Liu] were modified and incorporated into the database. This reassessment is based on new phase equilibrium data from [07Dra1, 07Dra2], and new thermodynamic data from [06Pop, 06Li].

References:

[01Liu]   Liu, X. J., Liu, H. S., Ohnuma, I., Kainuma, R., Ishida, K., Itabashi, S.,

               Kameda, K., Yamaguchi, K.: J. Electron. Mater., 2001, 30(9) 1093.

[06Pop] Popovič, A., Bencze, L.: Int. J. of Mass Spectrometry, 2006, 257, 41‐49.

[06Li]     Li, Z., Knott, S., Qiao, Z., Mikula, A.: Mater. Trans. A, 2006, 47(8), 20252032.

[07Dra1] Drápala, J., Burkovič, R., Kozelková, R, Smetana, B., Dočekalová, S.,  Dudek, R.,

                 Zlatohlávek, P., Vřešťál, J., Kroupa, A.: Acta Metallurgica Slovaca, 2007, 13(1),

                 670‐673.

[07Dra2] Drápala, J., Kubíček, P., Vřešťál, J., Losertová, M.: Defect and Diffusion Forum,

                Trans. Tech. Publication, Switzerland, 2007, 263, 231‐236.

 

Cu-Ni-Sn

The data for this ternary system were based on the work of Miettinen [03Mie]. In the assessment of [03Mie] different unary data and different descriptions of the relevant binary systems were used from those adopted for the COST 531 database. In addition, the high‐temperature Ni3Sn‐γ phase was modelled as D03 and the ordering reaction in the Cu‐Sn system was modelled in as BCC_A2D03. Therefore, it was necessary to reassess this system to ensure compatibility with the adopted unary and binary data in the COST 531 thermodynamic database. The data for this system were derived in the scope of COST 531 Action, also using new experimental data from [08Sch].

References:

[03Mie] Miettinnen, J.: CALPHAD, 2003, 27, 309‐318.

[08Sch] Schmetterer, C., Flandorfer, H., Luef, C., Ipser H., submitted to J. Electron. Mater.

 

In-Sb-Sn

Ishihara et al. [99Ish] have already provided optimized thermodynamic parameters for this ternary system. Nevertheless a critical evaluation of the literature data carried out within the framework of the COST 531 Action was necessary in view of the new thermodynamic assessment of the Sb‐Sn binary system [07Kro] and experimental results from [06Man]. These formed the basis for the reassessment of the data for this system by [06Man]. The results of thermodynamic modelling of ternary In‐Sb‐Sn system were compared with their own experimental results and literature data.

References:

[99Ish]   Ishihara, S., Ohtani, H., Saito, T., Ishida, K.: J. Japan Inst. Metals, 1999, 63(6) 695‐701.

[06Man] Manasijevič, D., Vřešťál, J., Minič, D., Kroupa, A., Živkovič, D., Živkovič, Ž: J. Alloys

                Compd., 2006, 438, 150‐157.

[07Kro]  Kroupa, A., Vízdal, J.: Defect and Diffusion Forum, 2007, 263, 99‐104.

 

 

In-Sn-Zn

The data from Cui et al. [01Cui] when combined with the current binary data were found to give good agreement with experimental data and were therefore adopted for the COST 531 database.

References:

[01Cui] Cui, Y., Liu, X. J., Ohnuma, I., Kainuma, R., Ohtani, H., Ishida, K.: J. Alloys and

 Compounds, 2001, 320, 234‐241.